首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In situ high-pressure tensiometry and ab initio calculations were used to rationally design surfactants for the 1,1,1,2-tetrafluoroethane-water (HFA134a|W) interface. Nonbonded pair interaction (binding) energies (E(b)) of the complexes between HFA134a and candidate surfactant tails were used to quantify the HFA-philicity of selected moieties. The interaction between HFA134a and an ether-based tail was shown to be predominantly electrostatic in nature and much more favorable than that between HFA134a and a methyl-based fragment. The interfacial activity of (i) amphiphiles typically found in FDA-approved pressurized metered-dose inhaler (pMDI) formulations, (ii) a series of nonionic surfactants with methylene-based tails, and (iii) a series of nonionic surfactants with ether-based tails was investigated at the HFA134a|W interface using in situ tensiometry. This is the first time that the tension of the surfactant-modified HFA134a|W interface has been reported in the literature. The ether-based surfactants were shown to be very interfacially active, with tension decreasing by as much as 27 mN.m(-)(1). However, the methyl-based surfactants, including those from FDA-approved formulations, did not exhibit high activity at the HFA134a|W interface. These results are in direct agreement with the E(b) calculations. Significant differences in interfacial activity are noted for surfactants at the 2H,3H-perfluoropentane (HPFP)|water and HFA134a|W interfaces. Care should be taken, therefore, when results from the mimicking solvent (HPFP) are extrapolated to HFA134a-based systems. The results shown here are of relevance in the selection of surfactants capable of forming and stabilizing reverse aqueous aggregates in HFA-based pMDIs, which are promising formulations for the systemic delivery of biomolecules to and through the lungs.  相似文献   

2.
The unique properties of compressed CO2, including its low cost, nontoxicity, easily tunable solvent strength, and favorable transport properties, make it an environmentally attractive alternative to volatile organic solvents. Suitable surface-active species can be utilized to realize the full potential of clean, CO2-based technologies, by helping to overcome the low solubility typically associated with many solutes of interest in CO2. In this work we synthesize and investigate the interfacial activity of a series of nonionic amphiphiles with a biocompatible and biodegradable CO2-phile at both the CO2-water (C|W) and CO2-water-solid (C|W|S) interfaces. We developed a high-pressure pendant drop tensiometer and contact angle goniometer that allows us to measure both tension and contact angle in tandem. The tension of the C|W interface was measured in the presence of the lactide (LA)-based surface active agents with varying molecular weight and hydrophilic-to-CO2-philic ratios. Emulsion studies with an optimum balanced surfactant were performed. The contact angle of water droplets against a silane-modified (hydrophobic) substrate under CO2 atmosphere was also measured in presence of a selected LA-based amphiphile. The results demonstrate that the nonionic copolymers with the biodegradable and biocompatible LA-based group can significantly reduce the tension of the C|W interface. The LA-based surface active species are also capable of forming stable emulsions of water and CO2 and reducing the angle of the three-phase C|W|S contact line.  相似文献   

3.
We have studied the calculation of surface and interfacial tension for a variety of liquid–vapor and liquid–liquid interfaces using molecular dynamics (MD) simulations. Because of the inherently small scale of MD systems, large pressure fluctuations can cause imprecise calculations of surface tension using the pressure tensor route. The capillary wave method exhibited improved precision and stability throughout all of the simulated systems in this study. In order to implement this method, the interface was defined by fitting an error function to the density profile. However, full mapping of the interface from coordinate files produced enhanced accuracy. Upon increasing the system size, both methods exhibited higher precision, although the capillary wave method was still more reliable. © 2013 Wiley Periodicals, Inc.  相似文献   

4.
A theoretical model to clarify the molecular origin of the mechanical and thermal stabilities of O/W or W/O microemulsion is proposed in which the low concentration of surfactants (emulsifiers) is limited. We assume only a short range interaction between surfactants and a bending stiffness energy which expresses the deformation energy from a preferable monolayer membrane curvature. We have found an interrelation among the interfacial pressure, Δp, of the monolayer due to the adsorption of surfactants in the microemulsion interface, interfacial tensions of oil-water interface and of the microemulsion, and the bending stiffness energy. We conclude that the interfacial tension and the stable form of the microemulsions (O/W type or W/O type) are infuenced largely by the effect of the bending stiffness energy. The interrelationship between the therraodynamical and mechanical stabilities of microemulsions is clarified by the use of our assumption.  相似文献   

5.
《Chemical physics letters》1987,141(4):357-360
Two-phase systems consisting of water-in-oil (W/O) microemulsions in equilibrium with excess water and oil-in-water (O/W) microemulsions in equilibrium with excess oil have been prepared using the surfactant sodium bis (2-ethylhexyl)sulphosuccinate (AOT) without cosurfactant. The interfacial tension of the planar interface separating the phases for the W/O case is only weakly dependent upon the volume fraction of droplets in the microemulsion phase whereas for the O/W case, the microemulsion droplet size increases and the tension drops as the dispersed volume fraction is increased.  相似文献   

6.
The solubilization and phase equilibria of w/o microemulsions have been shown to be dependent on two phenomenological parameters, namely the spontaneous curvature and elasticity of the interfacial film, when interfacial tension is very low. The spontaneous curvature of an interface is basically determined by the geometric packing of surfactant and cosurfactant molecules at the interface, whereas the interfacial elasticity is related to the energy required to bend the interface. The droplet size and solubilization of microemulsions is mainly determined by the radius of spontaneous curvature, and is further influenced by interfacial elasticity and interdroplet interactions. A w/o microemulsion with a highly curved and relatively rigid interfacial film can exist in equilibrium with excess water at the solubilization limit due to the interfacial bending stress. Increasing the natural radius and fluidity of the interface can increase the droplet size and hence the solubilization in the microemulsion. On the other hand, a w/o microemulsion with a highly fluid interfacial film can exist in equilibrium with an excess oil phase containing a low density of microemulsion droplets due to attractive interdroplet interaction. Increasing the interfacial rigidity and decreasing the natural radius in this case can increase water solubilization in the microemulsion by retarding the phase separation process. Thus, a maximum water solubilization in a w/o microemulsion can be obtained by minimizing both the interfacial bending stress of rigid interfaces and the attractive interdroplet interaction of fluid interfaces at an optimal interfacial curvature and elasticity. The study of phase equilibria of microemulsions can serve as a simple method to evaluate the property of the interface and provide phenomenological guidance for the formulation of microemulsions with maximum solubilization capacity.  相似文献   

7.
The dynamics of adsorption, interfacial tension, and rheological properties of two phosphocholine-derived partially fluorinated surfactants FnHmPC, designed to compensate for the weak CO(2)-surfactant tail interactions, were determined at the pressurized CO(2)-H(2)O interface. The two surfactants differ only by the length of the hydrocarbon spacer (5 CH(2) in F8H5PC and 11 CH(2) in F8H11PC) located between the terminal perfluoroalkyl chain and the polar head. The length of this spacer was found to have a critical impact on the adsorption kinetics and elasticity of the interfacial surfactant film. F8H5PC is soluble in both water and CO(2) phases and presents several distinct successive interfacial behaviors when bulk water concentration (C(W)) increases and displays a nonclassical isotherm shape. The isotherms of F8H5PC are similar for the three CO(2) pressures investigated and comprise four regimes. In the first regime, at low C(W), the interfacial tension is controlled by the organization that occurs between H(2)O and CO(2). The second regime corresponds to the adsorption of the surfactant as a monolayer until the CO(2) phase is saturated with F8H5PC, resulting in a first inflection point. In this regime, F8H5PC molecules reach maximal compaction and display the highest apparent interfacial elasticity. In the third regime, a second inflection is observed that corresponds to the critical micelle concentration of the surfactant in water. At the highest concentrations (fourth regime), the interfacial films are purely viscous and highly flexible, suggesting the capacity for this surfactant to produce water-in-CO(2) microemulsion. In this regime, surfactant adsorption is very fast and equilibrium is reached in less than 100 s. The behavior of F8H11PC is drastically different: it forms micelles only in the water phase, resulting in a classical Gibbs interface. This surfactant decreases the interfacial tension down to 1 mN/m and forms a strongly elastic interface. As this surfactant forms a very cohesive interface, it should be suitable for formulating stable water-in-CO(2) emulsions. The finding that the length of the hydrocarbon spacer in partially fluorinated surfactants can drastically influence film properties at the CO(2)-H(2)O interface should help control the formation of microemulsions versus emulsions and help elaborate a rationale for the design of surfactants specifically adapted to pressurized CO(2).  相似文献   

8.
The surface activities of lysozyme and dipalmitoyl phosphatidylcholine (DPPC) vesicles at aqueous/compressed fluid interfaces are examined via high-pressure interfacial tension measurements using the pendant drop technique. The density and interfacial tension in compressible fluid systems vary significantly with pressure, providing a versatile medium for elucidating interactions between biomolecules and fluid interfaces and a method to elicit pressure-dependent interfacial morphological responses. The effects of lysozyme concentration (0.0008, 0.01, and 1 mg/mL) and pressure (> or = 7 MPa) on the dynamic surface response in the presence of ethane, propane, N2, and CO2 at 298 K were examined. Interfacial lysozyme adsorption reduced the induction phase and quickly led to interfacial tensions consistent with protein conformational changes and monolayer saturation at the compressed fluid interfaces. Protein adsorption, as indicated by surface pressure, correlated with calculated Hamaker constants for the compressed gases, denoting the importance of dispersion interactions. For DPPC at aqueous/compressed or aqueous/supercritical CO2 interfaces (1.8-20.7 MPa, 308 K), 2-3-fold reductions in interfacial tension were observed relative to the pure binary fluid system. The resulting surface pressures infer pressure-dependent morphological changes within the DPPC monolayer.  相似文献   

9.
The effects of surfactant mixing on interfacial tension and on microemulsion formation were examined for systems of air/water and water/supercritical CO2 (scCO2) interfaces and for water/scCO2 microemulsions. A fluorinated surfactant, sodium bis(1H,1H,2H,2H-heptadecafluorodecyl)-2-sulfosuccinate (8FS(EO)2), was mixed with the three hydrocarbon surfactants, Pluronic L31, Tergitol TMN-6, and decyltrimethylammonium chloride (DeTAC), at equimolar ratio. For all the cases, the interfacial tension was significantly lowered by the mixing. The positive synergistic effect suggests that the mixed surfactants tend to pack more closely on the interface than the pure constituents. It was found, however, that the microemulsion formation in scCO2 was never facilitated by the mixing, except for the case of TMN-6. This is probably due to the segregation of the surfactants into hydrocarbon-rich and fluorocarbon-rich phases on the microemulsion surface.  相似文献   

10.
Molecular dynamics (MD) studies on heat transfer from a heated nanoparticle into the surrounding fluid have indicated that the fluid next to a spherical nanoparticle can get heated well above its boiling point without observing a phase change, while a contradicting behavior was observed for a flat surface-fluid interface. Another interesting observation is that the critical heat flux was found to increase with increase in the wetting characteristics of solid. Thus, the interfacial tension or free energy of solid-liquid interface could play a pivotal role in the mechanism of heat transfer. A recent study by Gloor et al. [J. Chem. Phys. 123, 134703 (2005)] has proposed test area simulation method (TASM) for the determination of interfacial tension. The present study involves the determination and the comparison of solid-liquid interfacial tension for planar and spherical interfaces using MD based on TASM and analyze the results. A higher interfacial tension value is observed for spherical nanoparticle fluid interface compared to flat surface fluid interface. The results also indicate that the solid-liquid interfacial tension is a size and temperature dependent property. The results from this study are also expected to give better insights into the possible reasons for the observed differences in the thermal transport for spherical nanoparticle-liquid interface compared to planar-liquid interface.  相似文献   

11.
Ionic liquid based microemulsions were characterized by absorption solvatochromic shifts, (1)H NMR and kinetic measurements in order to investigate the properties of the ionic liquid within the restricted geometry provided by microemulsions and the interactions of the ionic liquid with the interface. Experimental results show a significant difference between the interfaces of normal water and the new ionic liquid microemulsions. Absorption solvatochromic shift experiments and kinetic studies on the aminolysis of 4-nitrophenyl laurate by n-decylamine show that the polarity at the interface of the ionic liquid in oil microemulsions (IL/O) is higher than at the interface of water in oil microemulsions (W/O) despite the fact that the polarity of [bmim][BF(4)(-)] is lower than the polarity of water. (1)H NMR experiments showed that an increase in the ionic liquid content of the microemulsion led to an increase in the interaction between [bmim][BF(4)(-)] and TX-100. The reason for the higher polarity of the microemulsions with the ionic liquid can be explained in terms of the incorporation of higher levels of the ionic liquid at the interface of the microemulsions, as compared to water in the traditional systems.  相似文献   

12.
Design and development of a dynamic interfacial pressure detector (DIPD) is reported. The DIPD measures the differential pressure as a function of time across the liquid-liquid interface of organic liquid drops (i.e., n-hexane) that repeatedly grow in water at the end of a capillary tip. Using a calibration technique based on the Young-Laplace equation, the differential pressure signal is converted, in real-time, to a relative interfacial pressure. This allows the DIPD to monitor the interfacial tension of surface active species at liquid-liquid interfaces in flow-based analytical techniques, such as flow injection analysis (FIA), sequential injection analysis (SIA) and high performance liquid chromatography (HPLC). The DIPD is similar in principle to the dynamic surface tension detector (DSTD), which monitors the surface tension at the air-liquid interface. In this report, the interfacial pressure at the hexane-water interface was monitored as analytes in the hexane phase diffused to and arranged at the hexane-water interface. The DIPD was combined with FIA to analytically measure the interfacial properties of cholesterol and Brij®30 at the hexane-water interface. Results show that both cholesterol and Brij®30 exhibit a dynamic interfacial pressure signal during hexane drop growth. A calibration curve demonstrates that the relative interfacial pressure of cholesterol in hexane increases as the cholesterol concentration increases from 100 to 10,000 μg ml−1. An example of the utility of the DIPD as a selective detector for a chromatographic separation of interface-active species is also presented in the analysis of cholesterol in egg yolk by normal-phase HPLC-DIPD.  相似文献   

13.
A novel, growing drop technique is described for measuring dynamic interfacial tension due to sorption of surface-active solutes. The proposed method relates the instantaneous pressure and size of expanding liquid drops to the interfacial tension and is useful for measuring both liquid/gas and liquid/liquid tensions over a wide range of time scales, currently from 10 ms to several hours. Growing drop measurements on surfactant-free water/ air and water/octanol interfaces yield constant tensions equal to their known literature values. For surfactant-laden, liquid drops, the growing drop technique captures the actual transient tension evolution of a single interface, rather than interval times as with the classic maximum-drop-pressure and drop-volume tension measurements. Dynamic tensions measured for 0.25 mM aqueous 1-decanol solution/air and 0.02 kg/m3 aqueous Triton X-100 solution/dodecane interfaces show nonmonotonic behavior, indicating slow surfactant transport relative to the imposed rates of interfacial dilatation. The dynamic tension of a purified and fresh 6 mM aqueous sodium dodecyl sulfate (SDS) solution/air interface shows only a monotonic decrease, indicating rapid surfactant transport relative to the imposed rates of dilatation. Conversely, an aged SDS solution, naturally containing trace dodecanol impurities, exhibits dynamic tensions which reflect a superposition of the rapidly equilibrating SDS and the slowly adsorbing dodecanol.  相似文献   

14.
We have examined the interfacial properties of several fluorinated surfactants in a water/CO2 mixture with a pendant drop tensiometer and revealed the relationships between the interfacial properties, the surfactant structure, and the microemulsifying power. We employed the following Aerosol-OT analogue surfactants that have two fluorinated tails: bis(1H,1H,5H-octafluoropentyl)-2-sulfosuccinate (di-HCF4), sodium bis(1H,1H,9H-hexadecafluorononyl)-2-sulfosuccinate (di-HCF8), sodium bis(1H,1H,2H,2H-heptadecafluorodecyl)-2-sulfosuccinate (8FS(EO)2), and sodium bis((1H,1H,2H,2H-heptadecafluorodecyl)-oxyethylene)-2-sulfosuccinate (8FS(EO)4). To discuss the effect of the fluorocarbon/hydrocarbon ratio in single surfactant molecules, water/CO2 interfacial tension (IFT) of a hybrid surfactant with one fluorocarbon and one hydrocarbon tail, that of a surfactant with a single fluorinated tail, and that of a hydrocarbon surfactant, Aerosol-OT (AOT), were examined. The hybrid surfactant employed was sodium 1-oxo-1-[4-(tridecafluorohexyl)phenyl]-2-hexanesulfonate (FC6-HC4), and the single-tailed surfactant was perfluoropolyether ammonium carboxylate (PFPECOONH4, CF3CF2(CF2OCF(CF3))4COONH4). All of the fluorinated AOT analogue surfactants exhibited an excellent level of activity at the water/CO2 interface compared with other fluorinated surfactants and AOT. With a larger hydrocarbon chain number in the CO2-philic tails (i.e., from 0 to 2), the IFT of the AOT analogue surfactants was increased. The area occupied by one surfactant molecule at the water/CO2 interface, A, and the critical microemulsion concentration, cmicroc, were determined and used to examine the water-to-surfactant molar ratio within a reversed micelle, W0c, of the surfactants. The surfactants that form W/scCO2 microemulsions with a large W0c were found to lower the interfacial tension efficiently irrespective of increases in temperature. To achieve the most desirable W0C, the surfactant needs not only a high CO2-philicity of the tails but also a high Krafft point, properties which induce a low hydrophilic/CO2-philic balance.  相似文献   

15.
Gu  Yaxiong  Chen  Ye  Dong  Yifan  Liu  Junjie  Zhang  Xianhao  Li  Mingzhi  Shao  Yuanhua 《中国科学:化学(英文版)》2020,63(3):411-418
The study of microscopic structure of a liquid/liquid interface is of fundamental importance due to its close relation to the thermodynamics and kinetics of interfacial charge transfer reactions.In this article,the microscopic structure of a non-polarizable water/nitrobenzene(W/NB) interface was evaluated by scanning ion conductance microscope(SICM).Using SICM with a nanometer-sized quartz pipette filled with an electrolyte solution as the probe,the thickness of this type of W/NB interface could be measured at sub-nanometer scale,based on the continuous change of ionic current from one phase to another one.The effects for thicknesses of the non-polarizable W/NB interfaces with different electrolyte concentrations,the Galvani potentials at the interface and the applied potentials on the probe were measured and systematically analyzed.Both experimental setups,that is an organic phase up and an aqueous down,and a reverse version,were employed to acquire the approach curves.These data were compared with those of an ideal polarizable interface under the similar experimental conditions,and several characteristics of non-polarizable interfaces were found.The thickness of a non-polarizable interface increases with the decrease of electrolyte concentration and the increase of applied potential,which is similar to the situation of a polarizable liquid/liquid interface.We also find that the Galvani potential across a non-polarizable interface can also influence the interfacial thickness,this phenomenon is difficult to observe when using polarizable interface.Most importantly,by the comparison of two kinds of liquid/liquid interfaces,we experimentally proved that much more excess ions are gathered in the space charge layer of non-polarizable interfaces than in that of polarizable interfaces.These results are consistent with the predictions of molecular dynamic simulations and X-ray reflectivity measurements.  相似文献   

16.
Nematic-isotropic interfaces exhibit novel dynamics due to anchoring of the liquid crystal molecules on the interface. The objective of this study is to demonstrate the consequences of such dynamics in the flow field created by an elongated nematic drop retracting in an isotropic matrix. This is accomplished by two-dimensional flow simulations using a diffuse-interface model. By exploring the coupling among bulk liquid crystal orientation, surface anchoring and the flow field, we show that the anchoring energy plays a fundamental role in the interfacial dynamics of nematic liquids. In particular, it gives rise to a dynamic interfacial tension that depends on the bulk orientation. Tangential gradient of the interfacial tension drives a Marangoni flow near the nematic-isotropic interface. Besides, the anchoring energy produces an additional normal force on the interface that, together with the interfacial tension, determines the movement of the interface. Consequently, a nematic drop with planar anchoring retracts more slowly than a Newtonian drop, while one with homeotropic anchoring retracts faster than a Newtonian drop. The numerical results are consistent with prior theories for interfacial rheology and experimental observations.  相似文献   

17.
The dynamic behaviors of molecular assemblies at two immiscible liquid interfaces are intriguing topics in many fields of science and technology. However, it is generally difficult to investigate the dynamic behaviors of such molecular assemblies because of the buried nature of liquid/liquid interfaces. In the present paper, our recent investigations on dynamic behaviors of various molecular self-assemblies at liquid/liquid interfaces are reviewed. We monitored dynamic behaviors of the molecular assemblies by time-resolved quasi-elastic laser scattering (TR-QELS) and fluorescent spectroscopy. The former method allows us to monitor the change in interfacial tension with millisecond time-resolution. As molecular assemblies, bis(2-ethylhexyl)sulfosuccinate (AOT) microemulsion, phospholipid biomembrane models, and liposome-DNA complexes have all been studied, since they are relevant in material sciences and biological technologies. At liquid/liquid interfaces, these molecular assemblies showed characteristic behaviors. We review the finding of rebound response of the interfacial tension at the liquid/liquid interface induced by the adsorption of the AOT microemulsion. We monitored the hydrolysis reaction of phospholipid biomembrane models formed at oil/water interfaces, observing the different types of behavior of liposome-DNA complexes at biomembrane models with different kinds of phospholipids.  相似文献   

18.
The extension of the Psi function developed by Tóth from equilibria taking place at gas-solid interfaces to those taking place at liquid-solid interfaces was investigated. The results were applied to conventional liquid-solid systems used in reversed-phase liquid chromatography (RPLC). The adsorbents in these systems are made of porous silica having a hydrophobic solid surface obtained by chemically bonding C(18) alkyl chains to a porous silica gel then endcapping the surface with trimethylsilyl groups. The liquid is an aqueous solution of an organic solvent, most often methanol or acetonitrile. The probe compound used here is phenol. Adsorption data of phenol were measured using the dynamic frontal analysis (FA) method. The excess adsorption of the organic solvent was measured using the minor disturbance (MD) method. Activity coefficients in the bulk were estimated through the UNIFAC group contributions. The results show that the Psi function predicts 90% of the total free energy of immersion, DeltaF, of the solid when the concentration of phenol is moderate (typically less than 10 g/L). At higher concentrations, the nonideal behavior of the bulk liquid phase becomes significant and it may contribute up to about 30% of DeltaF. The high concentration of adsorbed molecules of phenol at the interface decreases the interfacial tension, sigma, by about 18 mN/m, independently of the structure of the adsorbed phase and of the nature of the organic solvent.  相似文献   

19.
The structure and dynamics of the neat water|nitrobenzene liquid|liquid interface are studied at 300 K using molecular dynamics computer simulations. The water is modeled using the flexible SPC potential, and the nitrobenzene is modeled using an empirically determined nitrobenzene potential energy function. Although nitrobenzene is a polar liquid with a large dielectric constant, the structure of the interface is similar to other water|non-polar organic liquid interfaces. Among the main structural features we describe are an enhancement of interfacial water hydrogen bonds, the specific orientation of water dipoles and nitrobenzene molecules, and a rough surface that is locally sharp. Surface roughness is also characterized dynamically. The dynamics of molecular reorientation are shown to be only mildly modified at the interface. The effect due to the polarizable many-body potential energy functions of both liquids is investigated and is found to affect only mildly the above results.  相似文献   

20.
Various industries including food and pharmaceuticals are sharing increasing interest in microemulsions. Also, one can demonstrate that solubilization of active materials within the core or interface of microemulsions may have environmental benefits.

In this work, we report three examples of new microemulsion formulations specially designed to be capable of solubilizing active materials and protecting the environment from the emission of hazardous matter or protecting sensitive molecules from the detrimental effects of the environment.

In the first example, fire-resistant ingredients were incorporated in hydraulic fluids based on water-in-oil (W/O) microemulsions and their typical characteristics were described. In the second example, five-component oil-in-water (O/W) microemulsions were designed to solubilize lycopene and protect it from exposure to light. In the third example, a friendly solvent (butyl lactate) was microemulsified to form nanosized liquid droplets capable of solubilizing bromine-based bactericide formulations of sophisticated wood preservatives.

The new vehicles exhibit a very significant solubilization capacity and can be applied in aqueous media. In the last example, the active matter may be triggered when demanded and the release will be followed by film formation.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号