首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The objective of this study was to establish the optimum conditions for preparing stable oil-in-water emulsions containing droplets surrounded by surfactant-chitosan layers. A primary emulsion containing small droplets (d32 approximately = 0.3 microm) was prepared by homogenizing 20 wt% corn oil with 80 wt% emulsifier solution (20 mM SDS, 100 mM acetate buffer, pH 3) using a high-pressure valve homogenizer. The primary emulsion was diluted with chitosan solutions to produce secondary emulsions with a range of oil and chitosan concentrations (0.5-10 wt% corn oil, 0-1 wt% chitosan, pH 3). The secondary emulsions were sonicated to help disrupt any droplet aggregates formed during the mixing process. The electrical charge, particle size, and amount of free chitosan in the emulsions were then measured. The droplet charge changed from negative to positive as the amount of chitosan in the emulsions was increased, reaching a relatively constant value (approximately +50 mV) above a critical chitosan concentration (C(Sat)), which indicated that saturation of the droplet surfaces with chitosan occurred. Extremely large droplet aggregates were formed at chitosan concentrations below C(Sat), but stable emulsions could be formed above C(Sat) provided the droplet concentration was not high enough for depletion flocculation to occur. Interestingly, we found that stable multilayer emulsions could also be formed by mixing chitosan with an emulsion stabilized by a nonionic surfactant (Tween 20) due to the fact the initial droplets had some negative charge. The information obtained from this study is useful for preparing emulsions stabilized by multilayer interfacial layers.  相似文献   

2.
The aim of this works is to study an oil-in-water emulsion stabilized with a triblock copolymer Synperonic F127 which presents a double size distribution of oil droplets. The emulsions were studied experimentally by means of differential scanning calorimetry (DSC) and dynamic light scattering (DLS). The DSC analysis was carried out focusing on the cooling behavior of the emulsion. The cooling thermograms of the oil-in-water emulsion revealed two crystallization peaks with Gaussian profile; the interesting characteristic is that both peaks are separated in temperature. In accordance to previous works for a single oil dispersed within an aqueous phase, the DSC technique must show a single Gaussian peak of crystallization attributable to a size distribution of droplets. In the present case of emulsions stabilized with 1 g/L of Synperonic F127, the aggregation behavior of triblock as a function of temperature allows to produce an emulsion with a double size droplet distribution. Comparison with emulsions stabilized with 2 and 4 wt% of non-ionic Tween 20 are also presented.  相似文献   

3.
An oil-in-water emulsion (5 wt% corn oil, 0.5 wt% beta-lactoglobulin (beta-Lg), 0.1 wt% iota-carrageenan, 5 mM phosphate buffer, pH 6.0) containing anionic droplets stabilized by interfacial membranes comprising of beta-lactoglobulin and iota-carrageenan was produced using a two-stage process. A primary emulsion containing anionic beta-Lg coated droplets was prepared by homogenizing oil and emulsifier solution together using a high-pressure valve homogenizer. A secondary emulsion containing beta-Lg-iota-carrageenan coated droplets was formed by mixing the primary emulsion with an aqueous iota-carrageenan solution. The stability of primary and secondary emulsions to sodium chloride (0-500 mM), calcium chloride (0-12 mM), and thermal processing (30-90 degrees C) were analyzed using zeta-potential, particle size and creaming stability measurements. The secondary emulsion had better stability to droplet aggregation than the primary emulsion at NaCl 相似文献   

4.
The influence of oil type (n-hexadecane, 1-decanol, n-decane), droplet composition (hexadecane:decanol), and emulsifier type (Tween 20, gum arabic) on droplet growth in oil-in-water emulsions was studied. Droplet size distributions of emulsions were measured over time (0-120 h) by laser diffraction and ultrasonic spectroscopy. Emulsions containing oil molecules of low polarity and low water solubility (hexadecane) were stable to droplet growth, irrespective of the emulsifier used to stabilize the droplets. Emulsions containing oil molecules of low polarity and relatively high water solubility (decane) were stable to coalescence, but unstable to Ostwald ripening, irrespective of emulsifier. Droplet growth in emulsions containing oil molecules of relatively high polarity and high water solubility (decanol) depended on emulsifier type. Decanol droplets stabilized by Tween 20 were stable to droplet growth in concentrated emulsions but unstable when the emulsions were diluted. Decanol droplets stabilized by gum arabic exhibited rapid and extensive droplet growth, probably due to a combination of Ostwald ripening and coalescence. We proposed that coalescence was caused by the relatively low interfacial tension at the decanol-water boundary, which meant that the gum arabic did not absorb strongly to the droplet surfaces and therefore did not prevent the droplets from coming into close proximity.  相似文献   

5.
The diffusion of sucrose through an optically opaque oil-in-water emulsion was monitored nondestructively by measuring the ultrasonic velocity as a function of height. Initially, a corn oil-in-water emulsion (0, 5, 10, 15, or 20 wt% oil) stabilized by Tween 20 (1 wt%) and xanthan (1 wt%) was placed in a measurement cell at 30°C. A 20 wt% sucrose solution containing the same concentration of Tween 20 and xanthan as the aqueous phase in the emulsion was placed on top of the emulsion. The ultrasonic velocity of this two-layer system was measured as a function of sample height and time and then converted into sucrose and oil concentration–distance profiles using empirical calibration curves. The translational diffusion coefficient of the sucrose in the upper and lower layers was determined by fitting the experimental data to a Fickian diffusion model. The measured diffusion coefficients of the sucrose molecules decreased as the droplet concentration in the emulsion increased, indicating retardation of the sugar molecule movement. Ultrasonic profiling was also used to monitor the compression of the emulsion due to movement of water molecules into the upper layer.  相似文献   

6.
ABSTRACT

Miorocrystalline cellulose stabilized emulsions (o/w) were evaluated by means of brightfield and polarized light microscopy, freeze-etch electron microscopy, droplet size analyses and rheologic measurements. These studies indicated that miorocrystalline cellulose (Avicel RC591 ) forms a network around emulsified oil droplets. This structure provides a mechanical barrier at the o/w interface which stabilizes the emulsion without the necessity for decreasing interfacial tension, as in conventional surfactant-stabilized emulsions. Rheologic studies indicated that emulsions containing Avicel RC591 had a considerable degree of thlxotropy which contributed to their stability. When Tween 80 was incorporated in this system, oil droplets coalesced indicating that the stability of the emulsion was affected adversely.  相似文献   

7.
The creaming and rheology of oil-in-water emulsions (30 vol% n-tetradecane, pH 6.8) stabilized by a mixture of commercial sodium caseinate and the non-ionic emulsifier polyoxyethylene sorbitan monolaurate (Tween 20) has been investigated at 21 degrees C. The presence of sufficient Tween 20 to displace most of the protein from the emulsion droplet surface leads to greatly enhanced emulsion creaming (and strongly non-Newtonian rheology) which is indicative of depletion flocculation by nonadsorbed surface-active material (protein and emulsifier). In emulsions containing a constant amount of surface-active material, the replacement of a very small fraction of Tween 20 by caseinate in a stable pure Tween 20 emulsion leads to enhanced creaming for a small fraction of the droplets, and this fraction increases with increasing replacement of emulsifier by protein. This behavior is probably due to depletion flocculation, although an alternative bridging mechanism is also a possibility. The overall stability of these sets of emulsions can be represented in terms of a global stability diagram containing regions of bridging flocculation and coalescence (low content of surface-active material), stability (intermediate content), and depletion flocculation (high content). Copyright 1999 Academic Press.  相似文献   

8.
The influence of environmental conditions (pH, NaCl, CaCl2, and temperature) on the properties and stability of oil-in-water (O/W) emulsions containing oil droplets surrounded by one-, two-, or three-layer interfacial membranes has been investigated. Three oil-in-water emulsions were prepared with the same droplet concentration and buffer (5 wt % corn oil, 5 mM phosphate buffer, pH 6) but with different biopolymers: (i) primary emulsion: 0.5 wt % beta-Lg; (ii) secondary emulsion: 0.5 wt % beta-Lg, 0.1 wt % iota-carrageenan; (iii) tertiary emulsion: 0.5 wt % beta-Lg, 0.1 wt % iota-carrageenan, 0-2 wt % gelatin. The secondary and tertiary emulsions were prepared by electrostatic deposition of the charged biopolymers onto the surfaces of the oil droplets so as to form two- and three-layer interfacial membranes, respectively. The stability of the emulsions to pH (3-8), sodium chloride (0-500 mM), calcium chloride (0-12 mM), and thermal processing (30-90 degrees C) was determined. We found that multilayer emulsions had better stability to droplet aggregation than single-layer emulsions under certain environmental conditions and that one or more of the biopolymer layers could be made to desorb from the droplet surfaces in response to specific environmental changes (e.g., high salt or high temperature). These results suggest that the interfacial engineering technology used in this study could lead to the creation of food emulsions with improved stability to environmental stresses or to emulsions with triggered release characteristics.  相似文献   

9.
A new rotating membrane emulsification system using a stainless steel membrane with 100 microm laser drilled pores was used to produce oil/water emulsions consisting of 2 wt% Tween 20 as emulsifier, paraffin wax as dispersed oil phase and 0.01-0.25 wt% Carbomer (Carbopol ETD 2050) as stabilizer. The membrane tube, 1 cm in diameter, was rotated inside a stationary glass cylinder, diameter of 3 cm, at a constant speed in the range 50-1500 rpm. The oil phase was introduced inside the membrane tube and permeated through the porous wall moving radially into the continuous phase in the form of individual droplets. Increasing the membrane rotational speed increased the wall shear stress which resulted in a smaller average droplet diameter being produced. For a constant rotational speed, the average droplet diameter increased as the stabilizer content in the continuous phase was lowered. The optimal conditions for producing uniform emulsion droplets were a Carbomer content of 0.1-0.25 wt% and a membrane rotational speed of 350 rpm, under which the average droplet diameter was 105-107 microm and very narrow coefficients of variation of 4.8-4.9%. A model describing the operation is presented and it is concluded that the methodology holds potential as a manufacturing protocol for both coarse and fine droplets and capsules.  相似文献   

10.
The droplet size distribution (DSD) of emulsions is the result of two competitive effects that take place during emulsification process, i.e., drop breakup and drop coalescence, and it is influenced by the formulation and composition variables, i.e., nature and amount of emulsifier, mixing characteristics, and emulsion preparation, all of which affect the emulsion stability. The aim of this study is to characterize oil-in-water (O/W) emulsions (droplet size and stability) in terms of surfactant concentration and surfactant composition (sodium dodecyl benzene sulphonate (SDBS)/Tween 80 mixture). Ultraviolet-visible (UV-vis) transmission spectroscopy has been applied to obtain droplet size and stability of the emulsions and the verification of emulsion stability with the relative cleared volume technique (time required for a certain amount of emulsion to separate as a cleared phase). It is demonstrated that the DSD of the emulsions is a function of the oil concentration and the surfactant composition with higher stability for emulsions prepared with higher SDBS ratio and lower relative cleared volume with the time. Results also show that smaller oil droplets are generated with increasing Tween 80 ratio and emulsifier concentration.  相似文献   

11.
This study evaluated how variations in polyglycerol polyricinoleate (PGPR) concentration and ethanol dispersed phase content affect the stability of ethanol-in-oil (E/O) emulsions. Results indicate that the stable 10?wt% E/O emulsions can be produced using 2?wt% PGPR. Increasing the ethanol dispersed phased content at constant PGPR concentration caused instability in emulsion. These emulsions remained stable to droplet flocculation and coalescence in the presence of Centella asiatica ethanol extract. PGPR does not greatly decrease the interfacial tension of the ethanol–oil interface. However, it adsorbed at the interface and stabilized the ethanol droplets in the emulsion via steric mechanism.  相似文献   

12.
Oil-in-water emulsions (pH 7.0 or pH 3.0) containing 30 wt% soya oil and various concentrations of lactoferrin were made in a two-stage valve homogenizer. The average droplet size (d32), the surface protein coverage (mg/m2) and composition, and the zeta-potential of the emulsions were determined. The value of d32 decreased with increasing lactoferrin concentration up to 1%, and then was almost independent of lactoferrin concentration beyond 1% at both pH 7.0 and pH 3.0. The surface protein coverage of the emulsions made at pH 7.0 increased almost linearly with increasing lactoferrin concentration from 0.3 to 3%, but increased only slightly in emulsions made at pH 3.0 at lactoferrin concentrations >1%. The surface protein coverage of the emulsions made at pH 3.0 was lower than that of the emulsions made at pH 7.0 at a given protein concentration. The emulsion droplets had a strong positive charge at both pH 7.0 and pH 3.0, indicating that stable cationic emulsion droplets could be formed by lactoferrin alone. When emulsions were formed with a mixture of lactoferrin and beta-lactoglobulin (beta-lg) (1:1 by weight), the charge of the emulsion droplets was neutralized at pH 7.0 suggesting the formation of electrostatic complexes between the two proteins. The composition of the droplet surface layer showed that both proteins were adsorbed, presumably as complexes, from the aqueous phase at pH 7.0 in equal proportions, whereas competitive adsorption occurred between lactoferrin and beta-lg at pH 3.0. At this pH, beta-lg was adsorbed in preference to lactoferrin at low protein concentrations (1%), whereas lactoferrin appeared to be adsorbed in preference to beta-lg at high protein concentrations.  相似文献   

13.
A novel method for preparing a finely dispersed oil-in-water emulsion is proposed. Octanoic acid dissolved in water at a high temperature of 220 or 230 degrees C at 15 MPa was combined with an aqueous solution of a surfactant and then the mixture was cooled. When a nonionic surfactant, decaglycerol monolaurate (ML-750) or polyoxyethylene sorbitan monolaurate (Tween 20), was used, fine emulsions with a median oil droplet diameter of 100 nm or less were successfully prepared at ML-750 and Tween 20 concentrations of 0.083% (w/v) and 0.042%, respectively, or higher. The diameters were much smaller than those of oil droplets prepared by the conventional homogenization method using a rotor/stator homogenizer. However, an anionic surfactant, sodium dodecyl sulfate, was not adequate for the preparation of such fine emulsions by the proposed method. Although the interfacial tensions between octanoic acid and the surfactant solutions were measured at different temperatures, they were not an indication for selecting a surfactant for the successful preparation of the fine emulsion by the proposed method.  相似文献   

14.
A laboratory study was conducted to evaluate the effect of pH on the stability of oil-in-water emulsions stabilized by a commercial splittable surfactant Triton SP-190 by comparison with the results obtained by a common surfactant Triton X-100. The emulsion stability was explored by measuring the volume of oil phase separated and the size of the dispersed droplets. It was found that the addition of inorganic acids did not significantly affect the stability of emulsions stabilized by Triton X-100, but had a profound influence on the stability of emulsions stabilized by Triton SP-190. Moreover, the droplet size of a Triton X-100-stabilized emulsion and its dynamic interfacial activity were insensitive to acids. However, at lower pH the droplet size of the emulsions stabilized by Triton SP-190 was considerably increased. From the dynamic interfacial tension measurements the dynamic interfacial activity of Triton SP-190 at the oil/water interface was found to be strongly inhibited by the addition of acids, resulting in a slower decreasing rate of dynamic interfacial tension. The results demonstrate that the dramatic destabilization of Triton SP-190-stabilized emulsions could be realized by the use of acids, which evidently changed the interfacial properties of the surfactant and resulted in a higher coalescence rate of oil droplets.  相似文献   

15.
The kinetics of oil solubilization into micelles from nearly monodisperse alkane-in-water emulsion droplets was investigated. Emulsions containing either hexadecane or tetradecane oils were fractionated to be narrowly distributed, using a method developed by Bibette [J. Bibette, J. Colloid Interface Sci. 147 (1991) 474]. These monodisperse emulsions were mixed with SDS or Tween 20 aqueous micellar solutions of various concentrations. Time-dependent solubilization was monitored using light scattering and a decrease in average droplet size over time was observed, in contrast to what has been observed previously with polydisperse emulsions. The rate at which the droplet size decreased was found to be independent of the initial droplet size. Turbidity measurements were also used to track the solubilization kinetics, and a population balance analysis used on both types of measurements to extract effective mass transfer coefficients. The dependence of these transfer coefficients on droplet size, alkane type, surfactant type and concentration provide insights into plausible mechanisms of emulsion droplet solubilization within micellar solutions.  相似文献   

16.
 The interaction of a nonionic polymeric surfactant with an anionic surfactant at the oil–water interface has been studied by its effects on the droplet size, stability and rheology of emulsions. Oil-in-water (o/w) emulsions were prepared using isoparaffinic oil and mixtures of a nonionic polymeric surfactant with an anionic surfactant. The macro-molecular surfactant was a graft copolymer with a backbone of polymethyl methacrylate and grafted polyethylene oxide (a graft copolymer with PEO chains of MW=750). The anionic surfactant was sodium dodecyl sulfate (SDS). The stabiliza-tion of the emulsion droplets was found to be different when using one or the other surfactant. The mechanism of stabilization of emulsion droplets by the macro-molecular surfactant is of the steric type while the stabilization by anionic surfactant is of the electrostatic repulsion type. Emulsions stabilized with mixtures present both types of stabilization. Other effects on the preparation and stabilization of emulsions were found to be dependent on properties associated with the surfactant molecular weight such as the Marangoni effect and Gibbs elasticity. The initial droplet size of the emulsions showed a synergistic effect of the surfactant combination, showing a minimum for the mixtures compared to the pure components. Emulsion stability also shows a synergistic interaction of both surfactants. Rheological measurements allow for the estimation of the interparticle interaction when measured as a function of volume fraction. Most of the effects observed can be attributed to the differences in interfacial tension and droplet radius produced by both surfactants and their mixtures. The elastic moduli are well explained on the basis of droplet deformation. Ionic versus steric stabilization produce little difference in the observed rheology, the only important differences observed concerned the extent of the linear viscoelasticity region. Received: 22 November 1996 Accepted: 24 March 1997  相似文献   

17.
The influence of thermal processing on droplet flocculation in oil-in-water emulsions stabilized by either beta-lactoglobulin (primary emulsions) or beta-lactoglobulin-iota-carrageenan (secondary emulsions) at pH 6 has been investigated. In the absence of salt, the zeta-potential of the primary emulsion was less negative (-40 mV) than that of the secondary emulsion (-55 mV) due to adsorption of anionic iota-carrageenan to the anionic beta-Lg-coated droplet surfaces. The zeta-potential and mean diameter (d(43) approximately 0.3 microm) of droplets in primary and secondary emulsions did not change after storage at temperatures ranging from 30 to 90 degrees C. In the presence of 150 mM NaCl, the zeta-potential of the primary emulsion was much less negative (-27 mV) than that of the secondary emulsion (-50 mV), suggesting that the latter was less influenced by electrostatic screening effects. The zeta-potential of the primary emulsions did not change after storage at elevated temperatures (30-90 degrees C). The zeta-potential of the secondary emulsions became less negative, and the aqueous phase iota-carrageenan concentration increased at storage temperatures exceeding 50 degrees C, indicating iota-carrageenan desorbed from the beta-Lg-coated droplets. In the primary emulsions, appreciable droplet flocculation (d(43) approximately 8 microm) occurred at temperatures below the thermal denaturation temperature (T(m)) of the adsorbed proteins due to surface denaturation, while more extensive flocculation (d(43) > 20 microm) occurred above T(m) due to thermal denaturation. In the secondary emulsions, the extent of droplet flocculation below T(m) was reduced substantially (d(43) approximately 0.8 microm), which was attributed to the ability of adsorbed carrageenan to increase droplet-droplet repulsion. However, extensive droplet flocculation was observed above T(m) because carrageenan desorbed from the droplet surfaces. Differential scanning calorimetry showed that iota-carrageenan and beta-Lg interacted strongly in aqueous solutions containing 0 mM NaCl, but not in those containing 150 mM NaCl, presumably because salt weakened the electrostatic attraction between the molecules.  相似文献   

18.
The objectives of this study were to examine the influence interfacial composition on environmental stresses stability of oil in water emulsions. An electrostatic layer-by-layer deposition method was used to create the multilayered interfacial membranes with different compositions: (i) primary emulsion (Soy protein Isolate); (ii) secondary emulsion (Soy protein Isolate – OSA-starch); (iii) tertiary emulsion (Soy protein isolate – OSA-starch – chitosan). Fourier transform-infrared (FTIR) and scanning electron microscopy (SEM) results confirmed the adsorption of charged polyelectrolyte onto oppositely charge polyelectrolyte-coated oil droplets. The stability of primary, secondary, and tertiary emulsions to thermal treatment (30 min at 30–90°C), pH (3–7) and NaCl (0–500 mM) were determined using ζ-potential, particle diameter, and microstructure analysis. Primary emulsions were unstable at pH 4–7, salt concentrations, and thermal treatments. Secondary emulsions were stable to creaming and droplet aggregation at pH 3–5, at ≤50 mM NaCl, and unstable at thermal treatments, whereas tertiary emulsions were stable at all salt concentrations, thermal treatments, and at pH 3–6. These results demonstrate that these polymers can be used to engineer oil in water emulsion systems and improve the emulsion stability to environmental stresses.  相似文献   

19.
The development of lipid oxidation in oil-in-water (O/W) emulsions is widely influenced by the properties of the interfacial layer, which separates the oil and water phases. In this work, the effect of the structure of the interface on the oxidative stability of surfactant stabilized O/W emulsions was investigated. Emulsions were prepared with either single Tween 20 or Tween 20/co-surfactant mixtures in limiting amounts. The co-surfactants, Span 20 and monolauroyl glycerol have the same hydrophobic tail as Tween 20 but differ by the size and composition of their polar headgroup. Metal-initiated lipid oxidation, monitored through the measurement of oxygen uptake, formation of conjugated dienes and volatile compounds, developed more rapidly in the emulsions stabilized by the surfactant mixture than in the single Tween 20-stabilized emulsion. The reconstitution of Tween 20/co-surfactant films at the air-water interface and their surface-pressure isotherms highlighted that, contrary to single Tween 20 molecules, Tween 20/co-surfactant mixtures exhibited an heterogeneous distribution within the interfacial layer, offering probably easier access of water-soluble pro-oxidants to the oil phase. These observations provide direct information about the link between the homogeneity of the interface layer and the oxidative stability of emulsions.  相似文献   

20.
Unadsorbed emulsifiers affect the physical and chemical behaviour of oil-in-water (O/W) emulsions. A simple methodology to quantify unadsorbed emulsifiers in the aqueous phase of O/W emulsions has been developed. Emulsions were centrifuged and filtered to separate the aqueous phase from the oil droplets and the concentration of unadsorbed emulsifiers in the aqueous phase determined. The quantification of unadsorbed surfactants based on the direct transesterification of their fatty acids was validated for Tween 20, Tween 80, citric acid ester (Citrem), Span 20 and monolauroyl glycerol. To determine unadsorbed proteins, results obtained with Folin-Ciocalteu reagent or UV-spectrophotometry were compared on emulsions stabilized by β-lactoglobulin (BLG), β-casein (BCN) or bovine serum albumin (BSA). The first method gave more accurate results especially during aging of emulsions in oxidative conditions. The whole methodology was applied to emulsions stabilized with single or mixed emulsifiers. This approach enables optimization of emulsion formulations and could be useful to follow changes in the levels of unadsorbed emulsifiers during physical or chemical aging processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号