首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
High performance liquid chromatography (HPLC) coupled to an ultraviolet (UV), diode array or fluorescence detector (UV/DAD/FLD) has been used to set up an analytical procedure for the quantification of 16 EU priority polyaromatic hydrocarbons (PAHs) in smoke flavourings. The following parameters have been determined for the 16 EU priority PAHs: limit of detection, limit of quantification, precision (repeatability and intermediate precision), recovery and measurement uncertainty, using the concept of accuracy profiles. They were in close agreement with quality criteria described in the Commission Regulation (EC) no. 627/2006 concerning PAHs in smoke flavourings. Presented at the AOAC Europe Workshop, November 2006, Limassol, Cyprus  相似文献   

2.
The aviation jet fuel widely used in turbine engine aircraft is manufactured from straight-run kerosene. The combustion quality of jet fuel is largely related to the hydrocarbon composition of the fuel itself; paraffins have better burning properties than aromatic compounds, especially naphthalenes and light polycyclic aromatic hydrocarbons (PAHs), which are characterised as soot and smoke producers. For this reason the burning quality of fuel is generally measured as smoke fermation. This evaluation is carried out with UV spectrophotometric determination of total naphthalene hydrocarbons and a chromatographic analysis to determine the total aromatic compounds. These methods can be considered insufficient to evaluate the human health impact of these compounds due to their inability to measure trace (ppm) amounts of each aromatic hyrcarbon and each PAH in accordance with limitations imposed because of their toxicological properties. In this paper two analytical methods are presented. Both are based on a gas chromatographic technique with a mass detector operating in be selected ion monitoring mode. The first method was able to determine more than 60 aromatic hydrocarbons in a fuel sample in a 35-min chromatographic run, while the second was able to carry out the analysis of more than 30 PAHs in a 40-min chromatographic run. The linearity and sensitivity of the methods in measuring these analytes at trace levels are described.  相似文献   

3.
利用傅里叶变换红外光谱(FT-IR)和气质联用(GC/MS)技术,研究了松木屑在400~900℃气化液体产物的主要组成成分和液体产物主要化学组成的来源与转化随气化温度变化的规律。结果表明,松木屑低温气化液体产物主要为酮、呋喃和愈创木酚等含氧化合物。随气化温度升高,液体产物的组成发生显著变化,400~ 500℃主要发生愈创木酚向酚类化合物的转变,500~600℃主要发生酮、呋喃向酚类化合物的转变,600~700℃主要发生酚类向茚和PAHs (多环芳烃)的转变,700~900℃主要发生酚类化合物向PAHs的转变,900℃液体产物的组成为大分子量的PAHs。  相似文献   

4.
Quantification of polycyclic aromatic hydrocarbons (PAHs) in smoked fish products often requires multiple clean-up steps to remove fat and other compounds that may interfere with the chemical analysis. We present a novel pressurized liquid extraction (PLE) method that integrates exhaustive extraction with fat retention in one single analytical step. The PLE parameters: type of fat retainer, flush volume, solvent composition, fat-to-fat retainer ratio (FFR), and the dimensions of the extraction cells were the most important factors for obtaining fat-free extracts with high recoveries of PAHs. A 100 mL extraction cell filled with 18 g activated silica gel, dichloromethane:hexane (15:85, v/v) as extraction solvent, FFR of 0.025 and 100% flush volume was the best analytical setup for integrated extraction and fat retention.The one-step procedure provided a more rapid and cost-efficient alternative with minimization of waste generation compared to the standard reference method that is based on a multi-step procedure. Furthermore, the analytical quality of the two methods are comparable, while the new integrated approach for extraction and cleanup is less prone to analytical errors (random and systematic) because of fewer analytical steps.  相似文献   

5.
An existing method was adapted to the purpose and validated in-house according to the IUPAC harmonised guideline for the determination of 15 EU priority polycyclic aromatic hydrocarbons (PAHs) in primary smoke condensates (PSCs) that are used to produce smoke flavourings for human consumption. Limits of detection (LOD) varied between 0.1 and 1.3 microg/kg, limits of quantitation (LOQ) between 0.5 and 4 microg/kg for the various PAHs in PSCs. The coefficient of variance of the repeatability was between 0.7% (benzo[a]pyrene) and 30% (dibenzo[a,h]pyrene) relative standard deviation, depending on the analyte. The recoveries varied between 100 and 102% (dibenzo[a,l]pyrene) and 69-83% (dibenzo[a,h]pyrene) over the analytical range of 5-35 microg/kg.  相似文献   

6.
A rapid, efficient and environmentally friendly method based on the ionic liquid (IL) 1-hexyl-3-methylimidazolium hexafluorophosphate ([C6MIM][PF6]) was developed for the determination of 16 polycyclic aromatic hydrocarbons (PAHs) in mainstream tobacco smoke. This technique combined ionic liquid (IL) enrichment with solvent reverse extraction for the replacement of solid phase extraction and rotary evaporation in the traditional method and enriched PAHs in the organic solvent. Several parameters, including the type of ionic liquid, volume of ionic liquid and water, extraction time, vortex time and reverse extraction time, were optimized. After pretreatment, the analytes were analyzed by gas chromatography-mass spectrometry (GC-MS) using selective ion monitoring (SIM). Satisfactory results were achieved when this method was applied to determine PAHs in mainstream tobacco smoke. The calibration curves were linear with correlation coefficients ranging from 0.9955 to 0.9999 at concentration levels of 10–800?µg?L?1, and the relative standard deviations of the optimized method were between 0.7% and 5.3%. The limits of detection were 0.01–0.6?ng cig?1, and the recoveries of the compounds were 80.2–118%. A comparison of this protocol with literature methods demonstrated that the proposed procedure provides accurate and reliable sample-treatment for the determination of PAHs in tobacco samples.  相似文献   

7.
A high-performance liquid chromatographic (HPLC) method is developed that simultaneously quantifies the dihydroxy compounds hydroquinone, resorcinol, and catechol and the monohydroxy compounds phenol, m + p-cresol and o-cresol in cigarette smoke. Particulate matter samples collected on Cambridge pads and in impingers by conventional trapping techniques are simply (no derivatization required) subjected to reversed-phase gradient liquid chromatography. Samples of both mainstream and sidestream smoke can be analyzed. Selective fluorescence detection is used to monitor the mobile phase effluent, by which these phenolic compounds are detected in the nanogram range. The detector response is linear, overall precision is good, and recoveries are greater than 95 percent. The total run time, excluding extraction, is one hour. The procedure has been applied to tobacco products whose smoke contains varying amounts of these phenols. Kentucky Reference Cigarette 1R4F was found to contain substantially more of these compounds than a new cigarette that heats but does not burn tobacco (New Cigarette). The method is compared with other procedures used to determine phenolics in cigarette smoke.  相似文献   

8.
The aim of this work is to establish a sensitive and reliable method for the analysis of the 16 priority Environmental Protection Agency-defined polycyclic aromatic hydrocarbons (PAHs) found in water samples. Gas chromatography (GC)-mass spectrometry (MS) and high-performance liquid chromatography (HPLC)-fluorescence detection (FLD)-UV techniques are optimized to obtain an adequate resolution of all compounds. Validation of the methods is carried out, and a good performance is observed for both techniques. The HPLC-FLD-UV technique is somewhat more sensitive than the GC-MS technique for the determination of PAHs; thus, the HPLC-FLD-UV method is used to follow up both the solid-phase extraction (SPE) analysis using cartridges and discs and the liquid-liquid extraction (LLE), which are also evaluated for the extraction of the PAHs. Low recoveries between 43% and 79% are obtained using SPE cartridges, and higher values are obtained using SPE discs (56-96%) and LLE (60-105%). Better results are obtained using the LLE technique, and, thus, analysis of real water samples is carried out using this technique. LODs between 0.6 and 21 ng/L and relative standard deviations less than 15% are obtained using a spiked water sample analyzed using the full LLE HPLC-FLD-UV method.  相似文献   

9.
Summary The direct analysis of mixtures by tandem-mass spectrometry assisted by off-line liquid chromatographymass spectrometry is already established as a rapid specific and extremely sensitive method that can be applied to samples of a variety of types for example, to analyses of main compounds and by-products in reaction mixtures, to products in medicated solutions or to fermentation products in more or less complex matrices. The techniques are demonstrated as pilot methods for obtaining structural information for identification or structure elucidation.  相似文献   

10.
Environmental aspects of PAH biodegradation   总被引:8,自引:0,他引:8  
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pollutants, some of which are on the US Environmental Protection Agency priority pollutant list. Consequently, timely clean-up of contaminated sites is important. The lower-mol-wt PAHs are amenable to bioremediation; however, higher-mol-wt PAHs seem to be recalcitrant to microbial degradation. The rates of biodegradation of PAHs are highly variable and are dependent not only on PAH structure, but also on the physicochemical parameters of the site as well as the number and types of microorganisms present. PAHs sorb to organic matter in soils and sediments, and the rate of their desorption strongly influences the rate at which microorganisms can degrade the pollutants. Much of the current PAH research focuses on techniques to enhance the bioavailability and, therefore, the degradation rates of PAHs at polluted sites. Degradation products of PAHs are, however, not necessarily less toxic than the parent compounds. Therefore, toxicity assays need to be incorporated into the procedures used to monitor the effectiveness of PAH bioremediation. In addition, this article highlights areas of PAH research that require further investigation.  相似文献   

11.
Physisorption and chemisorption processes of thiophene on coronene and 2Si-coronene have been studied using density functional theory and MP2 methods. These systems have been chosen as the simplest models to describe the adsorption of thiophene-like compounds on polycyclic aromatic hydrocarbons (PAHs). The calculated data suggest that the presence of silicon atoms in PAHs could favor their interaction with thiophene and similar compounds. Small stabilization energies have been found for several physisorbed complexes. The thiophene chemisorption on coronene seems very unlikely to occur, while that on 2Si-coronene leads to addition products which are very stable, with respect to the isolated reactants. These chemisorption processes were found to be exoergic (DeltaG < 0) in the gas phase and in the nonpolar liquid phase. The results reported in this work suggest that silicon defects on extended polycyclic aromatic hydrocarbons, such as graphite, soot, and large-diameter carbon nanotubes, could make them useful in the removal processes of aromatic sulfur compounds from oil hydrocarbons.  相似文献   

12.
Chemical and physiological properties are related to individual or bioactive compounds such as essential oils, terpenoids, flavonoids, volatile compounds and other chemicals which are present in natural products in low concentrations (e.g. ppm or ppb). For many years, classical separation, chromatographic and spectrometric techniques such as high performance liquid chromatography (HPLC), gas chromatography (GC), liquid chromatography (LC) and mass spectrometry (MS) have been used for the elucidation of isolated compounds from different matrices. Hence, the use of standard separation, chromatographic and spectrometric methods was found useful in chemical and both plant and animal physiology studies, for fingerprinting and comparing natural and synthetic samples, as well as to identify single active compounds. It has been generally accepted that a single analytical technique will not provide sufficient visualization of the metabolome, hence holistic techniques are needed for comprehensive analysis. In the last 40 years near infrared (NIR) spectroscopy became one of the most attractive and used methods of analyzing agricultural related products and plant materials which provide simultaneous, rapid and non-destructive quantitation of major. This technique has been reported to determine other minor compounds in plant materials such as volatile compounds and elements. The aim of this short review is to describe some recent applications of NIR spectroscopy combined with multivariate data analysis for high throughput screening of metabolites with an emphasis on food and medical applications.  相似文献   

13.
There is a need for a better characterization of sludges from wastewater treatment plants which are destined to be spread on agricultural lands. Inorganic pollutants are regularly controlled but organic pollutants have received few attention up to now. On this paper, we have been interested on the analysis of the 16 polycyclic aromatic hydrocarbons (PAHs) listed in the US Environmental Protection Agency (US EPA) priority list and more particularly of the six PAHs listed in the European community list (fluoranthene, benzo[b and k]fluoranthene, benzo[a]pyrene, benzo[ghi]perylene, indeno[1,2,3-cd]pyrene). The analysis step consists on liquid chromatography with both fluorescence and UV detections as described in the EPA Method 8310. As for the extraction step, several techniques such as supercritical fluid extraction, pressurized liquid extraction, focused microwave extraction in open vessels, Soxhlet and ultrasonic extractions are compared after optimization of the experimental conditions (solvent nature and quantity, temperature, pressure, duration, ... ) and validation with certified sludges. When optimized, these five extraction techniques are as much efficient with similar relative standard deviation. Whatever the extraction techniques used, the whole analysis protocol permits to quantify PAHs in the range of 0.09 to 0.9 mg/kg of dried sludges.  相似文献   

14.
Polycyclic aromatic hydrocarbons (PAHs) are compounds widespread in the environment, many of them showing carcinogenic effects. These compounds can reach the food chain by different ways and, therefore, the analysis of PAHs in food is a matter of concern. This article reviews the extraction methodologies together with the separation and detection techniques which are currently applied in the determination of PAHs in food and beverages. Specific extraction conditions, performance characteristics, chromatographic and detection parameters are discussed. A review of the occurrence of these compounds in the matrixes under study is also provided.  相似文献   

15.
Modern chromatographic techniques and their application in the determination of toxic compounds in faeces are reviewed. Faecal analysis may be of importance in toxicokinetic studies of xenobiotics in order to determine factors such as metabolism, body burden and major routes of elimination. Compounds of interest include various food constituents, drugs and occupational or environmental factors. Further, various mutagenic or carcinogenic compounds which are excreted by faeces have been indicated to represent risk factors for colorectal cancer. In this context, the chromatographic determination of the endogenously generated fecapentaenes and bile acids, both postulated etiological factors in colorectal carcinogenesis, is reviewed. For fecapentaene determination, several high-performance liquid chromatographic (HPLC) methods are available; however, the applicability of some of these methods is limited owing to insufficient separation of various isomeric forms or discrimination between fecapentaenes and their precursors. For the determination of bile acids in faeces, many chromatographic procedures have been reported, and the characteristics of the most relevant methods are compared and discussed. It is concluded that separation by gas chromatography (GC) in combination with mass spectrometry provides the highest selectivity and sensitivity. A relatively rapid alternative analysis for the determination of total and aqueous faecal bile acids is proposed. Further, methods for the determination of polycyclic aromatic hydrocarbons (PAHs) are reviewed. Although the use of radiolabelled PAHs in animal studies has many advantages, it cannot be applied for human biological monitoring and HPLC and GC provide sensitive alternatives. An HPLC method for the determination of non-metabolized PAHs in faeces is described.  相似文献   

16.
The environmental relevance of oxidized degradation products of polycyclic aromatic hydrocarbons (PAHs) increases due to enhanced combustion of organic matter and fossil fuels. For PAHs consisting of more than three condensed aromatic rings, soot aerosols are the main carrier, on the surface of which they can react with trace gases like ozone. In this study the clean-up procedure and analysis of ozonized benzo[a]pyrene (B[a]P) was optimized. B[a]P and its degradation products were preseparated into three fractions. Different reversed-phase materials were evaluated for high-performance liquid chromatographic separation. Among these, a phenyl-modified silica material proved best-suited and the chromatographic separation was optimized on this material. For the detection of separated degradation products, liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry (LC-APCI-MS) was used. With this method, 29 components could be characterized. Besides the three known main degradation products (B[a]P-1,6-dione, B[a]P-3,6-dione, B[a]P-6,12-dione, B[a]P-4,5-dione and 4-oxa-benzo[d,e,f]chrysene-5-one (B[def]C-lactone), were identified for the first time with the help of reference substances. B[def]C-lactone is known as a substance with a mutagenic potential similar to B[a]P. Several other compounds could be tentatively identified.  相似文献   

17.
An analytical procedure is described for the fractionation of organic compounds present in environmental samples and the determination of nitro polyaromatic hydrocarbons (nitro-PAHs). Both low and high resolution liquid chromatography are employed for the prefractionation of the soluble organic fraction (SOF) extracted from particulate matter or gaseous pollutants collected on adsorption traps. High resolution gas chromatography is used to analyze four fractions containing alkanes, PAHs, nitro-PAHs, and other polar PAHs. Nitrogen-containing species are separated by GC and detected specifically using an alkali flame (NPD) detector. Flame ionization (FID) detection, GC-MS of positive ions, and negative ion chemical ionization MS of the whole fraction is used for the identification and quantitation of the various components. The composition of SOF extracted from particulate matter emitted from diesel exhausts is elucidated and a large number of nitro-PAHs identified by the combination of the various techniques.  相似文献   

18.
Tobacco smoke is involved in the pathogenesis of cardiovascular and respiratory diseases and also has a local toxic effect in the oral cavity. Low-aliphatic aldehydes, such as formaldehyde, acetaldehyde and acrolein, are among the main components of mainstream cigarette smoke and their local noxious and carcinogenic effects in the oral cavity and upper gastrointestinal tract are well-known. Although various studies have been performed so far to determine their content in cigarette smoke, none has included the direct measurement of these compounds in the saliva of smoking and nonsmoking subjects. Thus, in an attempt to verify whether typical chromatographic (high-performance liquid chromatography, HPLC) and/or electrophoretic (capillary electrophoresis, CE) techniques could be reliable methods for determining the levels of these analytes in human saliva, we submitted specimens obtained from a selected population of heavy, moderate, and nonsmoking subjects to HPLC and CE analyses. Both methods showed good reproducibility in terms of migration times and peak height and/or areas and had comparable linearity. Quantitative analyses performed on the specimens investigated evidenced a 3.5-fold increase of low-aliphatic aldehydes in saliva of nonsmoking subjects after they have smoked a single cigarette and a further 2-fold increase of these compounds in saliva of smokers with a daily consumption of 10 or more cigarettes.  相似文献   

19.
Traditional activity-guided fractionation of natural products is a time-consuming, labor intensive, and expensive strategy, which cannot compete with high-throughput and rapid screening of natural products. Therefore, more efficient approaches are necessary for searching active compounds from natural products. Three main methods based on high-performance liquid chromatography (HPLC) analysis combined with 2,2′-diphenyl-1-picrylhydrazyl (DPPH) assay, DPPH spiking HPLC analysis, on-line post-column HPLC-DPPH analysis, and HPLC-based DPPH activity profiling, were then developed for the rapid screening of antioxidants from complex mixtures. In the present study, a comparative study of these three methods has been conducted to identify antioxidants from an ethyl acetate fraction of Pueraria lobata flowers. The parameters in HPLC analysis and DPPH assay were optimized. The results indicated that all three methods could achieve similar information with regard to antioxidants, without the need for preparative isolation techniques. However, there were differences in instrumental set-up, sensitivity, and efficiency. DPPH spiking HPLC analysis seemed to be more sensitive and effective with simpler instrumental set-up and easier operation, which could also detect the total antioxidant capacity of color complexes. Eighteen antioxidants were tentatively screened and identified from P. lobata flowers by DPPH spiking HPLC-MS/MS. Among them, ten compounds including one new compound were first isolated from P. lobata flowers, and the DPPH radical scavenging activity of the new compound was reported for the first time.  相似文献   

20.
Polycyclic aromatic hydrocarbons (PAHs) are frequently measured in the atmosphere for air quality assessment, in biological tissues for health-effects monitoring, in sediments and mollusks for environmental monitoring, and in foodstuffs for safety reasons. In contemporary analysis of these complex matrices, gas chromatography (GC), rather than liquid chromatography (LC), is often the preferred approach for separation, identification, and quantification of PAHs, largely because GC generally affords greater selectivity, resolution, and sensitivity than LC. This article reviews modern-day GC and state-of-the-art GC techniques used for the determination of PAHs in environmental samples. Standard test methods are discussed. GC separations of PAHs on a variety of capillary columns are examined, and the properties and uses of selected mass spectrometric (MS) techniques are presented. PAH literature on GC with MS techniques, including chemical ionization, ion-trap MS, time-of-flight MS (TOF-MS), and isotope-ratio mass spectrometry (IRMS), is reviewed. Enhancements to GC, for example large-volume injection, thermal desorption, fast GC, and coupling of GC to LC, are also discussed with regard to the determination of PAHs in an effort to demonstrate the vigor and robustness GC continues to achieve in the analytical sciences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号