首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report on what is to our knowledge the first continuous-wave (cw) optical parametric oscillator (OPO) that is pumped by a tunable fiber laser. The OPO is singly resonant for the signal wave and consists of a 40-mm-long periodically poled LiNbO(3) crystal in a four-mirror ring cavity. At a pump power of 8.3 W provided by the wavelength-tunable Yb-doped fiber laser, the singly resonant OPO generates 1.9 W of 3200-nm cw idler radiation. The singly resonant OPO was tuned from 1515 to 1633 nm (signal) and from 3057 to 3574 nm (idler) by means of the crystal temperature and poling period. We obtained a wide idler tuning range, from 2980 to 3700 mn, by tuning the wavelength of the fiber laser from 1032 to 1095 nm.  相似文献   

2.
低阈值温度调谐PPMgLN红外光参量振荡   总被引:1,自引:1,他引:0       下载免费PDF全文
研究了温度调谐下周期极化镁掺杂铌酸锂晶体的红外光参量振荡特性。采用外电场短脉冲极化技术,在大小为7.0mm×50.0mm×1.0mm的Z切高镁掺杂(摩尔分数0.05)铌酸锂上制备出了准相位匹配光学微结构器件,极化周期为30.0μm。以输出波长为1064nm的声光调QNd:YAG固体激光器作为基频泵浦光开展了光参量振荡研究。实验表明:泵浦该PPMgLN晶体,实现了室温下低阈值红外光参量振荡产生,阈值功率仅为45mW(重复频率1kHz)。在泵浦输入功率为225mW时,有36mW信号光输出,转换效率达到16.0%,通过调谐晶体温度(20~180℃),获得了调谐范围为1503~1550nm波段的OPO信号光,实现了低阈值可调谐红外光的稳定输出。  相似文献   

3.
搭建了Nd:YVO4/SESAM锁模激光器,采用LDA泵浦的Innoslab对其进行功率放大,最后同步泵浦MgO:PPLN实现了宽调谐皮秒中红外光参量运转。通过改变MgO:PPLN的温度和通道,实现了信号光1415~1557 nm、闲频光3362~4290 nm范围的宽调谐输出,其中最高的光光转换效率为17.5%。同步泵浦功率为16 W,脉冲重复频率为116.9 MHz时,同时获得1.33 W的1518 nm信号光和1.26 W的3558 nm闲频光输出。  相似文献   

4.
Yang ST  Velsko SP 《Optics letters》1999,24(3):133-135
We report kilohertz repetition-rate pulse-to-pulse wavelength tuning from 3.22 to 3.7 mum in a periodically poled lithium niobate (PPLN) optical parametric oscillator (OPO). Rapid tuning over 400 cm(-1) with random wavelength accessibility is achieved by rotation of the pump beam angle by no more than 24 mrad in the PPLN crystal by use of an acousto-optic beam deflector. Over the entire tuning range, a near-transform-limited OPO bandwidth can be obtained by means of injection seeding with a single-frequency 1.5-mum laser diode. The frequency agility, high repetition rate, and narrow bandwidth of this mid-IR PPLN OPO make it well suited as a lidar transmitter source.  相似文献   

5.
We present a 532 nm-pumped singly-resonant cw optical parametric oscillator based on MgO-doped PPLN with a minimum threshold pump power of 0.3 W. The OPO with a two-mirror standing-wave cavity is optimized by using a tunable diode laser on the path of the resonant signal beam. The maximum output power is 200 mW at an idler wavelength near 1330 nm at a pump power of 2 W. We report the degradation of the output power and beam characteristics at high pump power indicating a strong thermal lensing in the crystal. The continuous tuning range of the OPO is measured to be 800 MHz which is close to 90% of the free spectral range of the OPO cavity.  相似文献   

6.
利用全固化单频Nd:YVO4激光器泵浦双共振难相位匹配铌酸锂连续光学参量振荡器,实验研究了该光学参量振荡器下转换光的调谐特性。通过改变PPLN晶体的温度及OPO的腔长,下转换光的调谐范围分别为189nm和175nm,通过改变泵浦光频率,信号光频率连续调谐375MHz。实验结果与理论计算值基本吻合。  相似文献   

7.
This paper reported a broadband tuning intracavity optical parametric oscillator (IOPO), based on the multiple grating periodical poled lithium niobate (PPLN) pumped by a acoustic-optical (AO) Q-switched Nd:YVO4 laser. The widely tunable OPO output signal wavelength range from 1390 to 1605 nm, which was obtained by changing PPLN poling period from 27.8 to 31.6 μm at a certain temperature of 46°C, while the continuous tuning range was measured from 1475 to 1592 nm with the PPLN poling period of 30 μm by varying the temperature of nonlinear crystal PPLN from 50 to 120°C. The maximum output power of 0.92 W at 1534 nm with the minimum pulse width of 5.17 ns was generated under the incident pump power of 9.6 W at 808 nm. The corresponding peak power and single pulse energy were calculated to be 5.94 kW and 30.7 μJ, respectively. The M 2-factor was measured to be 2.01 at the signal power of 0.4 W.  相似文献   

8.
Chiang AC  Lin YY  Wang TD  Huang YC  Shy JT 《Optics letters》2002,27(20):1815-1817
We report a demonstration of distributed-feedback (DFB) optical parametric oscillation (OPO) by writing photorefractive gratings in periodically poled lithium niobate (PPLN). The photorefractive DFB structures were fabricated by illumination of PPLN with UV light through a photomask and by writing of PPLN with UV-light gated interfering laser beams at 532 nm. Evidence of OPO was observed from the spectral narrowing at the 1438.8- and the 619.3-nm signal wavelengths from 1064- and 532-nm-pumped PPLN crystals with the DFB grating periods phase matched to the 4084.5- and 3774-nm idler wavelengths, respectively.  相似文献   

9.
A broadband tunable, single-longitudinal-mode (SLM) Ytterbium fiber laser with unpumped Ytterbium-doped Sagnac loop is proposed and demonstrated experimentally. The unpumped Ytterbium-doped Sagnac loop is employed as a saturable absorber based auto-tracking filter to ensure single-longitudinal-mode oscillation. And a tunable band pass optical filter with large tuning range is applied to achieve broadband tuning ability. With 1-m Ytterbium-doped fiber as the gain medium, the SLM operation is achieved with over 60-nm wavelength tuning range at 160-mW pump power. The laser is very stable with output power of about 3 dBm and optical signal to noise ratio of higher than 50 dB in all the 60-nm tuning range.  相似文献   

10.
We report on a diode-laser pumped cw optical parametric oscillator (OPO) based on quasi-phase-matched periodically poled lithium tantalate. Pumped by the 2.3-W single-frequency, nearly diffraction-limited 925-nm output of an InGaAs diode master-oscillator power amplifier, the pump and signal resonant OPO generates a single-frequency idler wave with an output of as much as 244 mW. The wavelengths of the signal and idler waves are widely tunable in the range 1.55-2.3mum by use of different poling periods (27.3 to 27.9mum) and by variation of the crystal temperature in the range 70-190 degrees C.  相似文献   

11.
We demonstrated experimentally a synchronously pumped intracavity frequency-doubled femtosecond optical parametric oscillator (OPO) using a periodically-poled lithium niobate (PPLN) as the nonlinear material in combination with a lithium triborate (LBO) as the doubling crystal. A Kerr-lens-mode-locked (KLM) Ti:sapphire oscillator at the wavelength of 790 nm was used as the pump source, which was capable of generating pulses with a duration as short as 117 fs. A tunable femtosecond laser covering the 624-672 nm range was realized by conveniently adjusting the OPO cavity length. A maximum average output power of 260 mW in the visible range was obtained at the pump power of 2.2 W, with a typical pulse duration of 205 fs assuming a sech2 pulse profile.  相似文献   

12.
In this paper, the wide difference frequency generation (DFG) tuning characteristics around 3.4 μm are investigated by using the index dispersion property of PPLN. With a ytterbium doped fiber laser (YDFL) and an erbium doped fiber laser (EDFL) as the fundamental light sources, our simulation results show that the quasi-phase matching (QPM) wavelength acceptance bandwidth (BW) for the pump is much larger than that for the signal. Although the positions of the broadened QPM pump bands vary with the poling period and the signal wavelength, the corresponding idler tuning ranges center around 3.4 μm. With a signal wavelength of 1.57 μm, an idler tuning range of greater than 170 nm is experimentally obtained in the 30 uniform grating PPLN. When the signal wavelength and the poling period are respectively changed to 1.55 and 29.50 μm, wide DFG tuning operations around 3.4 μm are also achieved with the crystal temperature adjusted to adapt the change.  相似文献   

13.
《Optics Communications》2004,229(1-6):325-330
We demonstrate electro-optic spectral tuning in a pulsed periodically poled LiNbO3 (PPLN) optical parametric oscillator (OPO) in ns regime. A 3-cm-long LiNbO3 crystal is segmented in three equal sections; the outer sections are periodically poled. The center segment is of single domain whose refractive index is changed by electro-optic effect. Applying voltage from 0 to −5000 V, the OPO signal and idler waves are tuned from 1.932 to 1.912 μm and 2.368 to 2.40 μm, respectively. The signal and idler waves obtained are difference-frequency-mixed in a 10 mm long AgGaS2 crystal to produce mid-IR tunable from ∼10.5 to ∼9.4 μm, which matches the tuning range of a CO2 laser.  相似文献   

14.
We report on optical parametric oscillators (OPOs) based on large aperture periodically poled KTiOPO4 (PPKTP) and RbTiOAsO4 (PPRTA) pumped with high pulse energy and high average power Q-switched solid-state lasers. The OPOs were pumped with 1064-nm pulses of a diode-pumped Nd:YVO4 laser at 20 kHz repetition rate. The emitted signal wavelengths were 1.72 μm and 1.58 μm and the idler wavelengths were 2.79 μm and 3.26 μm, respectively. Pumping the PPKTP OPO with 7.2 W and the PPRTA OPO with 8 W average power, 2 W and 1.3 W total OPO output powers were generated. Two-dimensional measurements of the total OPO output power, the signal wavelength and the signal bandwidth in dependence on the crystal location indicated a good uniformity of the quasiphasematching structure over the entire 3-mm-thick crystals. This allowed pumping with larger pump beams and therefore with pulse energies of tens of millijoules. Pumping with different flash-lamp-pumped lasers, good OPO performance and high output pulse energies could be achieved for all pump lasers. Maximum input pulse energies of 56 mJ gave output pulse energies of as much as 18 mJ. The temperature tuning behaviors of both OPOs were measured, showing excellent agreement with calculated temperature tuning curves. New equations for temperature dispersion in RTA are presented. These results show that large-aperture PPKTP and PPRTA crystals are well suited for tunable nanosecond OPO operation with multi-watt average pump power and several tens of millijoules pump pulse energies. Received: 7 September 2001 / Published online: 7 November 2001  相似文献   

15.
Xu P  Li K  Zhao G  Zhu SN  Du Y  Ji SH  Zhu YY  Ming NB  Luo L  Li KF  Cheah KW 《Optics letters》2004,29(1):95-97
We present what is to our knowledge a new approach to generating tunable blue light by cascaded nonlinear frequency conversion in a single LiTaO3 crystal. Simultaneous quasi-phase matching of an optical parametric generation process and a sum-frequency mixing process is achieved by means of structuring the crystal with a quasi-periodic optical superlattice. The spectral (wavelength tuning and bandwidth) and power characteristics of the blue-light generation are studied with a fixed-wavelength 532-nm picosecond laser and a wavelength-tunable nanosecond optical parametric oscillator (OPO) as the pump sources. By tuning the OPO wavelength, we could tune the blue output over approximately 20 nm. Temperature tuning of the blue output at a fixed pump wavelength of 532 nm was limited to approximately 1.5 nm. A maximum blue power of 15 microW was generated at a pump power of 0.5 mW, corresponding to an efficiency of 3%.  相似文献   

16.
We report on what is to our knowledge the first realization of a quasi-phase-matched optical parametric oscillator (OPO) based on a crystal with a cylindrical shape. The main reason for interest in this device is its broad, continuous tuning. In experiments with a 1064-nm pump, the signal tuning range was equal to 525 nm (1515-2040 nm), and the corresponding idler was continuously tuned over 1340 nm (2220-3560 nm). The angular tuning was 26 degrees , with only a minor variation of the OPO threshold over the entire tuning range.  相似文献   

17.
We report a high-power picosecond optical parametric oscillator (OPO) synchronously pumped by a Yb fiber laser at 1.064 μm, providing 11.7 W of total average power in the near to mid-IR at 73% extraction efficiency. The OPO, based on a 50 mm MgO:PPLN crystal, is pumped by 20.8 ps pulses at 81.1 MHz and can simultaneously deliver 7.1 W of signal at 1.56 μm and 4.6 W of idler at 3.33 μm for 16 W of pump power. The oscillator has a threshold of 740 mW, with maximum signal power of 7.4 W at 1.47 μm and idler power of 4.9 W at 3.08 μm at slope efficiencies of 51% and 31%, respectively. Wavelength coverage across 1.43-1.63 μm (signal) and 4.16-3.06 μm (idler) is obtained, with a total power of ~11 W and an extraction efficiency of ~68%, with pump depletion of ~78% maintained over most of the tuning range. The signal and idler output have a single-mode spatial profile and a peak-to-peak power stability of ±1.8% and ±2.9% over 1 h at the highest power, respectively. A signal pulse duration of 17.3 ps with a clean single-peak spectrum results in a time-bandwidth product of ~1.72, more than four times below the input pump pulses.  相似文献   

18.
采用放大1064?nm掺镱光纤激光器作为泵浦源,实现了中红外3.8?μm?MgO:PPLN光参量振荡(OPO)激光输出.在泵浦源中,采用分布式反馈激光器(DFB)作为种子源来实现光纤激光窄线宽的调制,实现线宽2.5?nm到0.1?nm的压缩,最大平均输出功率可达40?W.进一步对不同泵浦线宽条件下中红外3.8?μm?M...  相似文献   

19.
Optical parametric oscillator (OPO) and amplifier (OPA) devices are useful for spectroscopic sensing of chemical processes in laboratory, industrial, and environmental settings. This is particularly true of nanosecond-pulsed, continuously tunable OPO/OPA systems, for which we survey a variety of instrumental strategies, together with actual spectroscopic measurements. The relative merits of OPO wavelength control by intracavity gratings and by injection seeding are considered. A major innovation comprises an OPO with a ring cavity based on periodically poled lithium niobate (PPLN) and injection-seeded by a single-mode tunable diode laser (TDL). Active cavity control by an ‘intensity dip’ method yields an optical bandwidth ≤0.005 cm-1 (150 MHz), which compares favourably with the performance of advanced grating-tuned OPO/OPA systems. A novel adaptation of this TDL-seeded PPLN OPO employs a compact, inexpensive multimode pump laser, with which it is still possible to obtain continuously tunable single-mode signal output. Cavity ringdown (CRD) spectroscopy also figures prominently, with infrared (IR) CRD spectra from both grating-scanned and TDL-seeded OPOs reported. Finally, a tunable ultraviolet (UV) source, combining a TDL-seeded passive-cavity OPO and a sum-frequency generation stage, is developed for measurements of time-resolved IR-UV double resonance spectra of acetylene and UV laser-induced fluorescence spectra of nitric oxide. Received: 28 March 2000 / Published online: 13 September 2000  相似文献   

20.
A synchronously pumped femtosecond optical parametric oscillator based on congruent MgO-doped periodically poled lithium niobate (c-MgO:PPLN) is reported. The system, operating at room temperature, was pumped by a mode-locked Ti:sapphire laser. The wavelengths of the signal and idler waves were tuned from 870 nm to 1.54 μm and 1.58 to 5.67 μm, respectively, by changing the pump wavelength, the grating period or the cavity length. Pumped by 1.1 W of 755 nm laser radiation, the OPO generated 310 mW of 1080 nm radiation. This signal output corresponds to a total conversion efficiency of 50%. Without dispersion compensation the OPO generated phase-modulated signal pulses of 200 fs duration. Besides the OPO of c-MgO:PPLN, an OPO of stoichiometric (s) MgO:PPLN was investigated. Because of the reduced sensitivity to photorefractive damage, both crystals allowed efficient OPO operation at room temperature. Received: 19 August 2002 / Revised version: 11 December 2002 / Published online: 19 March 2003 RID="*" ID="*"Corresponding author. Fax: +49-631/205-3906, E-mail: andres@physik.uni-kl.de  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号