首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have measured the temperature dependence of the internal friction and shear modulus of metallic glass alloys Fe40Ni40P14B6, Fe29Ni49P14B6Si2, Fe80B20 and Fe78Mo2B20 in the glassy and crystalline phases using a torsional pendulum technique. The internal friction in the glassy phase remains approximately constant from room temperature to a temperature which depends on the annealing treatment, and the rises exponentially with temperature. The internal friction measurements were made at two different frequencies (0.2 Hz and 1.0 Hz) and the activation energies for the relaxation processes estimated by the frequency shift method. The shear modulus increases by about 30% when the amorphous alloys are crystallized. The amorphous alloys Fe80B20 and Fe78Mo2B20 exhibit Invar type behaviour which disappears upon crystallization.  相似文献   

2.
The atomic structures of amorphous La55Al25Ni20 alloys which have a wide supercooled liquid region and a high reduced glass transition temperature have been studied using anomalous X-ray scattering (AXS) at the Ni K-absorption edge as well as the ordinary X-ray diffraction with Mo K radiation. The interference functions and the radial distribution functions were determined for the amorphous alloys as-quenched and after annealing at various temperatures and also for a fully crystallized sample. These systematic structural studies revealed a drastic change in Ni environment upon crystallization. The need for such atomic rearrangements around the Ni atoms during crystallization may be the reason why the amorphous phase is thermally stable.  相似文献   

3.
A. Inoue  T. Zhang  T. Masumoto 《Journal of Non》1992,150(1-3):396-400
An amorphous phase with a wide supercooled liquid region, > 50 K, was found to form over wide composition ranges in the La---Al---Ni and Zr---Al---Cu systems. The largest values for the temperature span between the crystallization temperature, Tx, and the glass transition temperature, Tg, ΔTx(-TxTg), are 69 K for La55 Al25Ni20 and 88 K for Zr65Al7.5Cu27.5. The structural relaxation behavior on annealing was examined for the two amorphous alloys with the largest ΔTx values. The magnitude of the structural relaxation increases gradually with increasing annealing temperature, Ta, and then rapidly in the Ta range slightly below Tg and decreases significantly on annealing Tg. The rapid increase in the magnitude of the structural relaxation on annealing near Tg is due to the glass transition. The single-stage structural relaxation indicates that there is no distinct difference in relaxation times (atomic bonding forces) between the constituent atoms in the two metal-metal-type amorphous alloys. The existence of an optimum bonding state is thought to cause the wide supercooled liquid region for the two amorphous alloys.  相似文献   

4.
The interest in superionic systems has increased in recent years because of the potential application of these materials as solid electrolytes. In this field, amorphous materials present important advantages when compared to the crystalline solids: larger conductivity, isotropy and absence of grain boundaries. In this work, amorphous alloys of compositions (Ge25Se75)100−yAgy with y=10, 15, 20 and 25 at.% have been studied. Amorphous samples in bulk were obtained from the liquid by water quenching (melt-quenching technique). The crystallization kinetics of the amorphous alloys have been studied under continuous heating and isothermal conditions by means of differential scanning calorimetry. A glass transition and two exothermic transformations were observed in all the samples. The quenched samples and the crystallization products have been characterized by X-ray diffraction. The primary crystallization of the ternary phase Ag8GeSe6 and the secondary phase GeSe2 was observed. The glass and crystallization temperatures, the activation energy and the crystallization enthalpy are reported. The first step of the crystallization of the Ag8GeSe6 phase in all the (Ge25Se75)100−yAgy samples is modelled taking into account the Johnson–Mehl–Avrami–Kolmogorov theory and considering that the changes in the composition only modify the viscosity of the undercooled liquid. The transformation diagrams (TTT and THRT) are calculated and the glass forming ability is analyzed. The experimental results are discussed and correlated with the structures proposed for the glass. The present results and conclusions are also compared with those reported by other authors.  相似文献   

5.
The possibility of synthesizing bulk amorphous alloys with additions of B and P to commercial cast iron (Ci) of the chemical composition Fe81.5Si3.8C14Tm0.7 (at.%) was investigated. The effect of the B and P concentration on thermal stability, bulk glass forming ability (BGFA) and microstructure was studied by calorimetric (DSC and DTA) measurements as well as by X-ray diffraction. With the addition of 8.42 and 12.17 B to the commercial Ci bulk amorphous alloys with very wide supercooled liquid regions (77 and 81 K, respectively) could be produced. The partial replacement of Ci by B and P atoms increases the thermal stability and the BGFA. The kinetics of crystallization was investigated both by linear heating and by isothermal DSC measurements. The changes in the microstructure of the crystalline phases formed during linear heating were studied during further isothermal annealing at 833 K.  相似文献   

6.
Time-resolved devitrification studies of Ti34−xCu47Zr11Ni8Six metallic glasses were performed using a recently developed high temperature furnace in a Debye–Scherrer geometry. Samples included powders produced by high pressure gas atomization and surface coatings deposited by air plasma spraying. Synchrotron radiation at the Advanced Photon Source at Argonne National Laboratory was used to follow the devitrification of samples during heating at 40 K min−1 between 623 and 1073 K. The crystallization behavior observed with structural diffraction data compare well with results from thermal analysis using differential scanning calorimetery. At 1073 K, these amorphous alloys evolve to a four phase microstructure which includes phases that appear to be closely related to Cu51Zr14, CuTi and Cu2TiZr.  相似文献   

7.
Glasses in the system Na2O/B2O3/Al2O3/In2O3 were melted and subsequently tempered in the range from 500 to 700 °C. Depending on the chemical composition, various crystalline phases were observed. From samples without Al2O3, In2O3 could not be crystallized from homogeneous glasses, because either spontaneous In2O3 crystallization occurred during cooling, or other phases such as NaInO2 were formed during tempering. The addition of alumina, however, controlled the crystallization of In2O3. Depending on the crystallization temperature applied, the crystallite sizes were in the range from 13 to 53 nm. The glass matrix can be dissolved by soaking the powdered glass in water. This procedure can be used to prepare nano-crystalline In2O3-powders.  相似文献   

8.
The glass transition behavior of a La55Al25Ni20 amorphous alloy was examined through the changes in the storage, E′, and loss, E″, moduli obtained by a forced oscillation method. Two distinguishable relaxation peaks are observed in the glass transition region, although these are not resolved in calorimetric measurements. At a frequency of 62.8 rad/s, E″ shows two peaks at 483 and 507 K. As the frequency decreases, the splitting of the two peaks becomes distinct and their peak temperatures shift to a lower value. The change in E″ with frequency also shows the two relaxation peaks. A master curve of E″ is derived by using the time-temperature superposition process. This is the first master curve for the relaxation spectrum in the glass transition region for amorphous alloys. The activation energies evaluated from the shift factors are 400 and 550 kJ/mol for the lower and higher temperature peaks, respectively.  相似文献   

9.
Al90Sm10, a marginal glass former, was rapidly solidified using Cu-block single roller melt spinning at wheel speeds of 30 and 40 m/s. The product phases of rapid solidification were identified and analyzed using high energy synchrotron X-ray diffraction (HEXRD), high resolution transmission electron microscopy, and atom probe tomography. The as-quenched structure consists of a saturated amorphous phase and nanocrystalline Al with typical length scale of about 5 nm. The appearance of a pre-peak on HEXRD diffraction patterns and a low activation energy for first crystallization as determined using the Kissinger and Ozawa methods indicate some local ordering in the amorphous phase. The devitrification phase transformation path was determined using in situ high energy synchrotron radiation. Three phases, MS1, H1, and Al4Sm, were identified during decomposition of the amorphous phase. MS1, H1 and Al4Sm are cubic, hexagonal and orthorhombic metastable phases, respectively.  相似文献   

10.
A. Dahshan   《Journal of Non》2008,354(26):3034-3039
Thermal stability and crystallization kinetics of As14Ge14Se72−xSbx (where x = 3, 6, 9, 12 and 15 at.%) glasses are studied by the differential scanning calorimetry. The values of the glass transition temperature (Tg) and the peak temperature of crystallization (Tp) are found to be dependent on heating rate and antimony content. From the heating rate dependence of Tg and Tp the values of the activation energy for glass transition (Et) and the activation energy for crystallization (Ec) are evaluated and their composition dependence discussed. Crystallization studies have been made under non-isothermal conditions with the samples heated at several uniform rates. Using a recent analysis developed for non-isothermal crystallization studies, information on some aspects of the crystallization process has been obtained. The stability calculations emphasized that the thermal stability decreases with increasing the Sb content.  相似文献   

11.
Aihu Chen  P.F. James 《Journal of Non》1988,100(1-3):353-358
A 10Li2O---90SiO2 (mol%) gel-glass has been prepared by using tetramethyl orthosilicate and lithium iso-propoxide as starting materials. The phase separation and crystallization behaviour was compared with the corresponding conventionally melted glass using DTA, X-ray diffraction and TEM. The same crystallization phase was found in both the gel glass and melted glass upon heating above 650°C. However, the rate of crystallization in the gel-glass was higher than in the melted glass. TEM revealed amorphous phase separation in the gel glass and melted glass. However, the morphologies were different, an interconnected microstructure being observed in the gel glass and a droplet structure in the melted glass. These differences can be partly attributed to differences in OH content. Other potential influencing factors are also considered. After 650°C for 2 h lithium disilicate crystals were observed in the volume of the gel glass by TEM. As the crystals grew they absorbed Li2O from the surrounding lithia-rich amorphous phase so that silica-rich (lithia depleted) diffusion zones formed around them.  相似文献   

12.
Measurements of internal friction and dynamic modulus have been carried out on amorphous Fe83−xMnxP17(x=9,12, or 15) alloys in the temperature range 300–800 K, as a function of applied frequency, by a forced oscillation method. The characteristic transition temperatures and activation energies for crystallization were measured by differential scanning calorimetry (DSC). The viscous flow of the sample was measured using a thermomechanical analyzer (TMA) under continuous heating conditions. Internal friction increases rapidly with temperature starting from 450 K for 0.1 Hz, 474 K for 0.5 Hz, 486 K for 1.0 Hz, 511 K for 5 Hz, and 525 K for 10 Hz for the Fe74Mn9P17 specimen. It was found that the internal friction peak temperature was very closely the same as the steady state viscous flow temperature from the TMA curves for Fe74Mn9P17 and Fe68Mn15P17 but not for Fe71Mn12P17. It is assumed that the internal friction peak does not correspond to the glass transition temperature or crystallization temperature for these alloy systems. Two maxima in the free-volume fraction and two minima in the viscosity were also found for the samples which exhibit a ‘mid-contraction’ in their TMA displacement curves. The internal friction peak occurred at the steady state viscous flow temperature. This occurrence means that the origin of the internal friction peak is related to the viscous flow behavior and free-volume fluctuation for this alloy system.  相似文献   

13.
《Journal of Non》2006,352(42-49):4769-4775
It is well known that ethanol exhibits a very interesting polymorphism presenting different solid phases: a fully-ordered (monoclinic) crystal, a (bcc) plastic crystal, which by quenching becomes an orientationally-disordered crystal with glassy properties (hence sometimes named ‘glassy crystal’), and the ordinary amorphous glass. We have carried out calorimetric, X-ray diffraction, and Brillouin-scattering experiments above liquid-nitrogen temperatures and have found several new features that shed more light on the rich and interesting phase diagram of ethanol. Firstly, we have identified up to four different varieties of the monoclinic crystalline phase depending on the thermal history. We also present new specific-heat data of these glassy and crystalline phases below the glass transition temperature up to the melting temperature. Furthermore, we have unexpectedly found that the amorphous phase can also be obtained by the unusual route of a very slow cooling of the liquid in some particular experimental set-ups, evidencing the heterogeneous character of the crystallization kinetics of these molecular glass-formers.  相似文献   

14.
The crystallization behavior of lithium disilicate glass powder heated in molten LiNO3 salt was investigated using X-ray diffraction techniques. Heat treatment at 500°C with LiNO3 molten salt caused a lithium metasilicate, Li2SiO3, crystal phase to appear after 5–96 h. By contrast, glass powder heat-treated in air at 500°C remained amorphous after 5 h and turned into lithium disilicate, Li2Si2O5, crystal after 40 h. Qualitatively similar results were obtained at 400°C. Glass powder heat-treated at 575°C in both molten salt and in air turned into lithium disilicate crystal. Metasilicate crystallization occurs with LiNO3 molten salt at 500 and 400°C due to the incorporation of lithium into the sample glass powder from the melt during crystallization. An increase in lithium content in the sample after molten salt heat treatment was confirmed by chemical analysis using dc plasma emission spectroscopy.  相似文献   

15.
通过XRD分析和热膨胀率实验,从析晶角度探讨了添加纳米级SnO2或Yb2O3对熔融石英陶瓷析晶性能的影响。结果表明:熔融石英陶瓷高温析晶的主要晶化产物为方石英,方石英析出量随烧结温度的提高而逐渐增多;纳米级SnO2或Yb2O3的引入可通过抑制熔融石英中方石英的析出,有效地降低熔融石英材料在升温过程中的热膨胀率,并且随着烧结温度升高需要不断调整添加剂用量,纳米级SnO2和Yb2O3的最佳用量(质量分数)分别为1%和2%。  相似文献   

16.
Calcium phosphate glass ceramics with incorporation of small additions of two nucleating agents, MgO and K2O were prepared in the metaphosphate and pyrophosphate region, using an appropriate two-step heat treatment of controlled crystallization defined by differential thermal analysis results. Identification and quantification of crystalline phases precipitated from the calcium phosphate glass were performed using X-ray diffraction and Rietveld analysis. The β-Ca2P2O7 (β-DCP), KCa(PO3)3, β-Ca(PO3)2 and Ca4P6O19 phases were detected in the glass ceramics. In order to evaluate the degradation of the glass ceramics prepared, degradation studies were carried out during 42 days in Tris-HCl solution at 37 °C, pH 7.4, using granules in the range of 355–415 μm. The materials presented a weight loss ranging up to 12%. The ions leached during the immersion mainly originated from the KCa(PO3)3 phase, probably due to the presence of K+ ion in the calcium metaphosphate, and the residual glassy phase. The structural changes at the surface of materials during degradation have been analyzed by Fourier transform infrared spectroscopy and X-ray diffraction. Results showed that significant surface changes occurred with immersion time, with the decrease of KCa(PO3)3, β-Ca2P2O7 and β-Ca(PO3)2 phases occurring at different periods of immersion. This study has demonstrated an easy way to prepared calcium phosphate materials with specific calcium phosphate phases and crystallization, and therefore specific degradation rates.  相似文献   

17.
Differential scanning calorimetric measurements have been performed on amorphous Ge16Te84 alloys; the study of the dependence of the cooling rate on the reciprocal fictive temperature yields the activation energy of the relaxation process; this value fits well that deduced from shear viscosity measurements. The enthalpy difference between the supercooled liquid and the crystal has been investigated by drop calorimetry on samples annealed at different temperatures below Tg, during different times. These results, combined with the former obtained by DSC lead to the enthalpy values of the metastable liquid system from 390 to 510 K.  相似文献   

18.
The inorganic constituents of coal remaining after high temperature combustion in a MHD (Magnetohydrodynamic) power plant combustor form an iron-rich, “dirty” glass whose electrical properties are important in the operation of the MHD generator. In particular, alkali “seed” (K2CO3) is added to enhance the conductivity of the plasma so the slag layer which coats the walls and electrodes of the generator is rich in K2O. We present results of a systematic study of the electrical conductivity of a Rosebud coal ash with graded amounts of K2CO3 added. At high temperatures, the conductivity curves are smooth with many ions contributing. At lower temperatures the curves become more complex with the presence of crystalline phases in the glass.  相似文献   

19.
X-ray crystallography and Mössbauer spectroscopy were used to investigate the crystallization of the amorphous Fe100−xBx alloys, 14 x 20 annealed at 615 K. As a result of the heat treatment, the formation of crystalline -Fe and Fe3B were observed. Variations in the values of the isomer shift and the orientation of the axis of magnetization indicate changes in the iron-boron bonding and the local atomic arrangement.

Formation of the -Fe phase was determined as a function of boron concentration and annealing time. Crystallization rates of that phase were observed to be dependent on boron concentration and on the annealing time. The average hyperfine field of the untreated samples was observed to increase till x = 17 after which it decreased. This is explained in terms of the Invar behavior of Fe83B17. The anomalous crystallization of Fe86B14 is proposed to be due to the existence of interstitial-like boron sites in a near bcc short range atomic structure.  相似文献   


20.
Titanium oxide (TiO2) films were deposited on silicon substrates at the temperature in the range 50–600 °C by DC reactive magnetron sputtering. It was found that the anatase and rutile phases co-existed in the TiO2 films deposited at 450–500 °C, while only the anatase phase existed in those deposited at other temperatures. The mechanism of such a crystallization behavior of TiO2 films is preliminarily explained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号