首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single cell patterning holds important implications for biology, biochemistry, biotechnology, medicine, and bioinformatics. The challenge for single cell patterning is to produce small islands hosting only single cells and retaining their viability for a prolonged period of time. This study demonstrated a surface engineering approach that uses a covalently bound short peptide as a mediator to pattern cells with improved single cell adhesion and prolonged cellular viability on gold patterned SiO2 substrates. The underlying hypothesis is that cell adhesion is regulated by the type, availability, and stability of effective cell adhesion peptides, and thus covalently bound short peptides would promote cell spreading and, thus, single cell adhesion and viability. The effectiveness of this approach and the underlying mechanism for the increased probability of single cell adhesion and prolonged cell viability by short peptides were studied by comparing cellular behavior of human umbilical cord vein endothelial cells on three model surfaces whose gold electrodes were immobilized with fibronectin, physically adsorbed Arg-Glu-Asp-Val-Tyr, and covalently bound Lys-Arg-Glu-Asp-Val-Tyr, respectively. The surface chemistry and binding properties were characterized by reflectance Fourier transform infrared spectroscopy. Both short peptides were superior to fibronectin in producing adhesion of only single cells, whereas the covalently bound peptide also reduced apoptosis and necrosis of adhered cells. Controlling cell spreading by peptide binding domains to regulate apoptosis and viability represents a fundamental mechanism in cell-materials interaction and provides an effective strategy in engineering arrays of single cells.  相似文献   

2.
A novel vertically aligned carbon nanotube based electrical cell impedance sensing biosensor (CNT-ECIS) was demonstrated for the first time as a more rapid, sensitive and specific device for the detection of cancer cells. This biosensor is based on the fast entrapment of cancer cells on vertically aligned carbon nanotube arrays and leads to mechanical and electrical interactions between CNT tips and entrapped cell membranes, changing the impedance of the biosensor. CNT-ECIS was fabricated through a photolithography process on Ni/SiO(2)/Si layers. Carbon nanotube arrays have been grown on 9 nm thick patterned Ni microelectrodes by DC-PECVD. SW48 colon cancer cells were passed over the surface of CNT covered electrodes to be specifically entrapped on elastic nanotube beams. CNT arrays act as both adhesive and conductive agents and impedance changes occurred as fast as 30 s (for whole entrapment and signaling processes). CNT-ECIS detected the cancer cells with the concentration as low as 4000 cells cm(-2) on its surface and a sensitivity of 1.7 × 10(-3)Ω cm(2). Time and cell efficiency factor (TEF and CEF) parameters were defined which describe the sensor's rapidness and resolution, respectively. TEF and CEF of CNT-ECIS were much higher than other cell based electrical biosensors which are compared in this paper.  相似文献   

3.
Asphahani F  Thein M  Wang K  Wood D  Wong SS  Xu J  Zhang M 《The Analyst》2012,137(13):3011-3019
Cellular impedance sensors have attracted great attention as a powerful characterization tool for real-time, label-free detection of cytotoxic agents. However, impedance measurements with conventional cell-based sensors that host multiple cells on a single electrode neither provide optimal cell signal sensitivity nor are capable of recording individual cell responses. Here we use a single-cell based platform to monitor cellular impedance on planar microelectrodes to characterize cellular death. In this study, individual cells were selectively patterned on microelectrodes with each hosting one live cell through ligand-mediated natural cell adhesion. Changes in cellular morphology and cell-electrode adherence were monitored after the patterned cells were treated with varying concentrations of hydrogen peroxide, sodium arsenite, and disodium hydrogen arsenate, three potent toxicants related to neurotoxicity and oxidative stress. At low toxicant concentrations, impedance waveforms acquired from individual cells showed variable responses. A time- and concentration-dependent response was seen in the averaged single-cell impedance waveform for all three toxicants. The apoptosis and necrosis characterizations were performed to validate cell impedance results. Furthermore, time constants of apoptosis and necrosis in response to toxicant exposure were analytically established using an equivalent circuit model that characterized the mechanisms of cell death.  相似文献   

4.
A proof of concept procedure for the electroaddressable covalent immobilization of DNA and protein on arrayed electrodes along with simultaneous detection of multiple bioagents in the same sample solution is described. Carboxyphenyldiazonium was selectively deposited onto five of nine individually addressable electrodes in an array via bias assisted assembly. Amine functionalized DNA probes were covalently coupled to the carboxyl surface via carbodiimide chemistry. This was followed by the covalent immobilization of diazonium-antibody conjugates into the remaining four electrodes via cyclic voltammetry. Simultaneous electrochemical detection of a DNA sequence related to the breast cancer BRCA1 gene and the human cytokine protein interleukin-12, which is a substantial component in the immune system response and attack of tumor cells, is reported. These results demonstrate the possibility of selective patterning of diverse biomolecules on a single device and may have significant implications for future development of microarrays and biosensors.  相似文献   

5.
Gold micro-electrodes with various diameters (25, 50, 75, 100 and 250 μm) were manufactured using standard micro-fabrication techniques and optimized for counting of MCF-7 cells (breast tumor cells) with single cell resolution. For specific cell capture, anti-EpCAM was immobilized on 11-mercaptoundecanoic acid (11-MUA)-3-mercaptopropionic acid (3-MPA) mixed self-assembled monolayer (SAM) modified gold surface of micro-electrodes. Electrodes were characterized using optical, cyclic voltammetry and electrochemical impedance spectroscopic (EIS) techniques. Cell capture response recorded using EIS suggested that optimum electrode dimensions should be analogous to desired cell size. For MCF-7 cells with an average diameter of 18 ± 2 μm, an electrode with 25 μm diameter was established as the optimum electrode size for precise single cell recognition and enumeration. In EIS investigation, the 25 μm electrode exhibited an impedance change of ~2.2 × 10(7) Ω in response to a single tumor cell captured on its surface. On the other hand other electrodes (250, 100, 75 and 50 μm) showed much less response for a single tumor cell. In future, the use of high density arrays of such electrodes with surface modifications will result in miniaturized lab on a chip devices for precise counting of MCF-7 cells with single cell resolution.  相似文献   

6.
In this paper we describe plasma stencilling techniques for patterning 10 mammalian cell lines on hydrophobic and cell repellent poly(dimethylsiloxane) (PDMS), methylated glass and bacterial grade polystyrene surfaces. An air plasma produced with a Tesla generator operating at atmospheric pressure was used with microengineered stencils for patterned surface oxidation, selectively transforming the surface to a hydrophilic state to enable cell adhesion and growth. Plasma stencilling obviates the need for directly patterning cell adhesion molecules. Instead, during cell culture, adhesion proteins from the media assemble in a bioactive form on the hydrophilic regions. Critically, the removal of protein patterning prior to cell culture provides the option to also use PDMS–PDMS plasma bonding to incorporate cell patterns within microfluidic systems. Linear patterns were generated using PDMS microchannel stencils, and polyimide stencils with through holes were used for the production of cellular arrays. For the production of smaller cellular arrays, a novel microcapillary-based dielectric barrier discharge system was developed. A numerical method to characterise the cell patterns is also introduced and was used to demonstrate that plasma stencilling is highly effective, with complete patterns confined during long term cell culture (>10 days). In summary, plasma stencilling is simple, rapid, inexpensive, reproducible and a potentially universal cell line patterning capability.
Figure
Microfluidic plasma stencilling for generating cell lines.  相似文献   

7.
Control of the cell adhesion and growth on chemically patterned surfaces is important in an increasing number of applications in biotechnology and medicine, for example implants, in-vitro cellular assays, and biochips. This review covers patterning techniques for organic thin films suitable for site-directed guidance of cell adhesion to surfaces. Available surface patterning techniques are critically evaluated, with special emphasis on surface chemistry that can be switched in time and space during cultivation of cells. Examples from the authors’ laboratory include the use of cell-repellent self-assembled monolayers (SAM) terminated by oligoethylene glycol (OEG) units and the lifting of the cell repellent properties by use of electrogenerated Br2/HOBr which can be performed with positionable microelectrodes. Structural changes of the SAM were analyzed by polarization-modulated infrared reflection absorption spectroscopy (PM IRRAS). Use of a soft array system of individually addressable microelectrodes enables formation of flexible and complex patterns in a short time and has the potential for further acceleration of probe-induced local manipulation of cell adhesion.  相似文献   

8.
Microfluidic impedance cytometry shows a great value in biomedical diagnosis. However, the crosstalk between neighboring microelectrodes strongly weakens the impedance signal. Hereby, we demonstrate a novel microfluidic impedance cytometer consisted of sensing electrodes and ground electrodes (GNDs). The simulation reveals a signal enhancement by more than five times with GNDs compared to that without ones. We also found that the linear correlation between the impedance at a high frequency and that at a low frequency varies as microparticle size changes, which can be used for microparticle classification. The study can help with microelectrode optimization and signal processing for microfluidic impedance analysis.  相似文献   

9.
10.
Electrochemical impedance spectroscopy was evaluated for the label free detection of MCF-7 cancer cell in which c-erbB-2 receptor is overexpressed on the cell surfaces. Anti-c-erbB-2, used as a specific antibody, was immobilized on electrogenerated polypyrrole-NHS on electrodes via covalent linking. The polymer formation, the grafting of the antibody, and the recognition event with the cancer cells using MCF-7 as a model cell line, were characterized by using cyclic voltammetry and fluorescence microscopy. The impedimetric sensor showed high sensitivity from 100 to 10 000 cell/mL without needing any labeling step and represents an efficient transduction method for cell selective detection.  相似文献   

11.
Microfluidic impedance pulse sensor has emerged as an easily handled and low‐cost platform in the electrical analysis of biological cells. In the conventional method, impedance sensor demanded expensive patterning metal electrodes on the substrate, which are directly in touch with electrolytes in order to measure the microfluidic channel impedance change. In this article, a cost‐effective microfluidic impedance sensor built upon a dielectric film coated printed circuit board is introduced. Impedance electrodes are protected by a dielectric film layer from electrochemical erosion between electrodes and electrolyte. Human red blood cells from adult and neonatal were utilized to demonstrate the feasibility of the proposed device in the electroanalysis of biological cells.  相似文献   

12.
To investigate the effectiveness of potential anticancer therapeutics or therapies, efficient screening methods are required. On the one hand, multicellular 3D aggregates (spheroids) are a powerful in vitro model for simulating the in vivo situation and on the other hand, planar electrode structures are generally highly suitable for automation and parallel testing. Here, the detection of the effect of active substances on spheroids positioned on electrodes of substrate integrated electrode arrays is exemplarily investigated. As a 3D tissue model a reaggregation system of T47D clone 11 tumor cells is used. The effect of cytotoxins (DMSO, Triton X-100) on spheroids can be detected by recording the effective impedance of planar electrodes covered by spheroids. The equivalent circuit model parameter of electrodes covered by cytotoxin treated spheroids are determined from recorded impedance spectra and compared to the parameter of electrodes covered by control spheroids as well as not covered electrodes. Spheroids on electrodes mainly influence the electrode impedance in the frequency range of 10 kHz to 1 MHz. The results are discussed in view of an optimal electrode/spheroid-interface for sensing the effects of therapeutics with high sensitivity.  相似文献   

13.
To investigate the effectiveness of potential anti-cancer therapeutics or therapies, efficient screening methods are required. On the one hand, multicellular 3D aggregates (spheroids) are a powerful in vitro model for simulating the in vivo situation and on the other hand, planar electrode structures are generally highly suitable for automation and parallel testing. Here, the detection of the effect of active substances on spheroids positioned on electrodes of substrate integrated electrode arrays is exemplarily investigated. As a 3D tissue model a reaggregation system of T47D clone 11 tumor cells is used. The effect of cytotoxins (DMSO, Triton X-100) on spheroids can be detected by recording the effective impedance of planar electrodes covered by spheroids. The equivalent circuit model parameter of electrodes covered by cytotoxin treated spheroids are determined from recorded impedance spectra and compared to the parameter of electrodes covered by control spheroids as well as not covered electrodes. Spheroids on electrodes mainly influence the electrode impedance in the frequency range of 10 kHz to 1 MHz. The results are discussed in view of an optimal electrode/spheroid-interface for sensing the effects of therapeutics with high sensitivity.  相似文献   

14.
A new cytological tool, based on the microCoulter particle counter (microCPC) principle, aimed at diagnostic applications for cell counting and separation in haematology, oncology or toxicology is described. The device measures the spectral impedance of individual cells or particles and allows screening rates over 100 samples s(-1) on a single-cell basis. This analyzer is intended to drive a sorting actuator producing a subsequent cell separation. Size reduction and integration of functions are essential in achieving precise measurements and high throughput. 3D finite element simulations are presented to compare various electrode geometries and their influence on cell parameters estimation. The device is based on a glass-polyimide microfluidic chip with integrated channels and electrodes microfabricated at the length scale of the particles to be investigated (1-20 microm). A laminar liquid flow carries the suspended particles through the measurement area. Each particle's impedance signal is recorded by a differential pair of microelectrodes using the cell surrounding media as a reference. The micromachined chip and processing electronic circuit allow simultaneous impedance measurements at multiple frequencies, ranging from 100 kHz to 15 MHz. In this paper, we describe the microfabrication and characterisation of an on-chip flow-cytometer as the first building block of a complete cell-sorting device. We then discuss the signal conditioning technique and finally impedance measurements of cells and particles of different sizes and types to demonstrate the differentiation of subpopulations in a mixed sample.  相似文献   

15.
Integration of redox enzymes with an electrode support and formation of an electrical contact between the biocatalysts and the electrode is the fundamental subject of bioelectronics and optobioelectronics. This review addresses the recent advances and the scientific progress in electrically contacted, layered enzyme electrodes, and discusses the future applications of the systems in various bioelectronic devices, for example, amperometric biosensors, sensoric arrays, logic gates, and optical memories. This review presents the methods for the immobilization of redox enzymes on electrodes and discusses the covalent linkage of proteins, the use of supramolecular affinity complexes, and the reconstitution of apo-redox enzymes for the nanoengineering of electrodes with protein monolayers of electrodes with protein monolayers and multilayers. Electrical contact in the layered enzyme electrode is achieved by the application of diffusional electron mediators, such as ferrocene derivatives, ferricyanide, quinones, and bipyridinium salts. Covalent tethering of electron relay units to layered enzyme electrodes, the cross-linking of affinity complexes formed between redox proteins and electrodes functionalized with relay-cofactor units, or surface reconstitution of apo-enzymes on relay-cofactor-functionalized electrodes yield bioelectrocatalytic electrodes. The application of the functionalized electrodes as biosensor devices is addressed and further application of electrically "wired" enzymes as catalytic interfaces in biofuel cells is discussed. The organization of sensor arrays, self-calibrated biosensors, or gated bioelectronic devices requires the microstructuring of biomaterials on solid supports in the form of ordered micro-patterns. For example, light-sensitive layers composed of azides, benzophenone, or diazine derivatives associated with solid supports can be irradiated through masks to enable the patterned covalent linkage of biomaterials to surfaces. Alternatively, patterning of biomaterials can be accomplished by noncovalent interactions (such as in affinity complexes between avidin and a photolabeled biotin, or between an antibody and a photoisomerizable antigen layer) to provide a means of organizing protein microstructures on surfaces. The organization of patterned hydrophilic/hydrophobic domains on surfaces, by using photolithography, stamping, or micromachining methods, allows the selective patterning of surfaces by hydrophobic, noncovalent interactions. Photoactivated layered enzyme electrodes act as light-switchable optobioelectronic systems for the amperometric transduction of recorded photonic information. These systems can act as optical memories, biomolecular amplifiers, or logic gates. The photoswitchable enzyme electrodes are generated by the tethering of photoisomerizable groups to the protein, the reconstitution of apo-enzymes with semisynthetic photoisomerizable cofactor units, or the coupling of photoisomerizable electron relay units.  相似文献   

16.
Micro scale patterning of bioactive surfaces is desirable for numerous biochip applications. Polyethyleneoxide-like (PEO-like) coating with non-fouling functionality has been deposited using low frequency AC plasma polymerization. The non-fouling properties of the coating were tested with human cells (HeLa) and fluorescence labeled proteins (isothiocyanate-labeled bovine serum albumin, i.e. FITC-BSA). The PEO-like coatings were fabricated by plasma polymerization of 12-crown-4 (ppCrown) with plasma polymerized hexene (ppHexene) as adhesion layer. The coatings were micro patterned using conventional cleanroom photolithography and lift-off. Single cell arrays showed sharp contrast in cell adhesion between the untreated glass surface and the ppCrown layer. Similarly, proteins adsorbed selectively to untreated glass but not to ppCrown. The simplicity of the lift-off technique and the sturdiness and versatility of the plasma-polymerized coatings, make this technology highly suitable for bio-MEMS and biochip applications, where patterned high contrast non-fouling surfaces are needed.  相似文献   

17.
A hybrid chip is described which combines a microfluidic network fabricated in a silicone elastomer (PDMS) with planar microelectrodes. It was used to measure extracellular potentials from single adult murine cardiac myocytes in a restricted extracellular space. The recorded variations in the extracellular potentials were caused by transmembrane currents associated with spontaneously initiated intracellular calcium waves. Single cells were trapped inside the 100 pl microchamber by pressure gradients and maintained for several hours by continuous perfusion. In addition, the localized delivery of drugs to a portion of the cell was demonstrated. The impedance of the electrodes was reduced by a factor of 10 to 20 after the electrodeposition of platinum black. Biopotentials recorded from single cells with platinum black electrodes showed a three-fold decrease in the noise, resulting in a maximum signal-to-noise ratio of 15:1. Characteristic variations in the frequency and shape of the extracellular potentials were observed among different cells which are most likely due to differences in the sarcoplasmic reticulum Ca(2+) load. Our device architecture permits the integration of electrochemical and optical sensors for multiparameter recordings.  相似文献   

18.
Control of cell adhesion is a key technology for cell-based drug screening and for analyses of cellular processes. We developed a method to spatiotemporally control cell adhesion using a photochemical reaction. We prepared a cell-culturing substrate by modifying the surface of a glass coverslip with a self-assembled monolayer of an alkylsiloxane having a photocleavable 2-nitrobenzyl group. Bovine serum albumin (BSA) was adsorbed onto the substrate to make the surface inert to cell adhesion. When exposed to UV light, the alkylsiloxane underwent a photocleavage reaction, leading to the release of BSA from the surface. Fibronectin, a protein promoting cell adhesion, was added to cover the irradiated regions and made them cell-adhesive. Seeding of cells on this substrate resulted in their selective adhesion to the illuminated regions. By controlling the sizes of the illuminated regions, we formed cell-adhesive spots smaller than single cells and located focal adhesions of the cells. Moreover, by subsequently illuminating the region alongside the cells patterned on the substrate in advance, we released their geometrical confinements and induced migration and proliferation. These manipulations were conducted under a conventional fluorescence microscope without any additional instruments. The present method of cell manipulation will be useful for cell biological studies as well as for the formation of cell arrays.  相似文献   

19.
This work presents a microfluidic device, which was patterned with (i) microstructures for hydrodynamic capture of single particles and cells, and (ii) multiplexing microelectrodes for selective release via negative dielectrophoretic (nDEP) forces and electrical impedance measurements of immobilized samples. Computational fluid dynamics (CFD) simulations were performed to investigate the fluidic profiles within the microchannels during the hydrodynamic capture of particles and evaluate the performance of single‐cell immobilization. Results showed uniform distributions of velocities and pressure differences across all eight trapping sites. The hydrodynamic net force and the nDEP force acting on a 6 μm sphere were calculated in a 3D model. Polystyrene beads with difference diameters (6, 8, and 10 μm) and budding yeast cells were employed to verify multiple functions of the microfluidic device, including reliable capture and selective nDEP‐release of particles or cells and sensitive electrical impedance measurements of immobilized samples. The size of immobilized beads and the number of captured yeast cells can be discriminated by analyzing impedance signals at 1 MHz. Results also demonstrated that yeast cells can be immobilized at single‐cell resolution by combining the hydrodynamic capture with impedance measurements and nDEP‐release of unwanted samples. Therefore, the microfluidic device integrated with multiplexing microelectrodes potentially offers a versatile, reliable, and precise platform for single‐cell analysis.  相似文献   

20.
Platinum microelectrodes were fabricated on a sapphire substrate by lithographic patterning and used to manipulate 1.58 microm silica particles in the plane of the substrate. A digital video system captured the motion of particles far from the electrodes and their deposition onto the working electrode during application of a DC potential. The role of electrode reversibility was investigated by comparing as-deposited electrodes with electrodes modified by electrolytic plating of platinum. Particles were also observed adhering to the substrate before reaching the electrode. The zeta potential of the particles and substrate was measured. The differing surface chemistry of the two systems and a local reduction in pH due to the production of hydrogen ion at the anode can explain the adhesion phenomena. Force distance curves were recorded using a colloid probe atomic force microscopy technique to directly measure the interaction of the silica particles with the sapphire substrate. These data validated the observed adhesion at the electrode and provided further support for the temporal and spatial reduction in pH. The role of Faradaic processes and the diffusion of potential determining ions in electrophoretic deposition were also considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号