首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
The dynamics of the pyridinium cation in thiourea pyridinium nitrate inclusion compound has been studied using quasielastic neutron scattering in a wide temperature range (10-350 K). The elastic incoherent structure factor was determined from neutron backscattering and time-of-flight measurements and its analysis allows to describe in detail the geometry of the motions of the pyridinium cation. Our study reveals two types of motion having two different correlation times. The pyridinium cation reorients about the axis perpendicular to its molecular plane over inequivalent threefold potential energy barriers and also executes a faster out-of-plane motion about the axis passing through two opposite atoms of the ring.  相似文献   

2.
3.
We have studied the dynamics of bis-thiourea pyridinium chloride and bromide by means of quasielastic neutron scattering (QENS). The QENS data allow describing the geometry of the in-plane motion of the pyridinium cation and reveal that it is similar to the motion previously observed in bis-thiourea pyridinium iodide. Molecular dynamics (MD) simulations have been performed to investigate the cation dynamics on the high temperature phase of the full series of compounds: bis-thiourea pyridinium chloride, bromide and iodide. Three different models of intermolecular potential have been tested and the agreement between the simulated and experimental elastic incoherent structure factors (EISFs) is used to select the more realistic one. The detailed analysis of the MD results indicates that Coulombic interactions together with the formation of hydrogen bonds between the pyridinium cation and the host sublattice influence strongly the geometry of the in-plane cation reorientation.  相似文献   

4.
We have used quasielastic neutron scattering to probe the solid-state ligand dynamics in the coordination polymer Mn[N(CN)(2)](2)(pyz) [pyz = pyrazine] which has double-interpenetrating 3D lattices. A reversible structural phase transition occurs at 410 K as shown by neutron spectroscopy and differential scanning calorimetry. The origin of this transition is linked to rotational dynamics associated with the bridging pyz ligands. At 425 K, the pyrazine ring motion can be solely regarded as a 180 degrees reorientational jump about the axis defined by the Mn-N coordinative bonds, occurring with a correlation time of approximately 70 ps. This model can be extended to the 200-410 K temperature region using high-resolution backscattering spectroscopy to measure an identical motion on the time scale of nanoseconds with an activation energy of 24 +/- 2 kJ mol(-1). In contrast, no quasielastic scattering is seen for the 2D layered variant beta-Cu[N(CN)(2)](2)(pyz), owing to its more compact layer packing motif. Importantly, this work represents the very first study of solid-state rotational dynamics in an interpenetrating lattice structure.  相似文献   

5.
A quasielastic neutron scattering experiment has revealed the dynamics of surface water in a high surface area zirconium oxide in the temperature range of 300-360 K. The characteristic times of the rotational (picoseconds) and translational (tens of picoseconds) components of diffusion motion are well separated. The rotational correlation time shows an Arrhenius-type behavior with an activation energy of 4.48 kJ/mol, which is lower compared to bulk water. The rotational diffusion at room temperature is slower by about a factor of 2 compared to bulk water, whereas the translational diffusion slows down by a factor of 40. In contrast to bulk water, the translational correlation time exhibits an Arrhenius-type temperature dependence with an activation energy of 11.38 kJ/mol. Comparison of different models for jump diffusion processes suggests that water molecules perform two-dimensional jumps at a well-defined, almost temperature-independent distance of 4.21-4.32 A. Such a large jump distance indicates a low molecular density of the layer of diffusing molecules. We argue that undissociated water molecules on an average form two hydrations layers on top of the surface layer of hydroxyl groups, and all the layers have similar molecular density. Quasielastic neutron scattering experiment assesses the dynamics of the outermost hydration layer, whereas slower motion of the water molecules in the inner hydration layer contributes to the elastic signal.  相似文献   

6.
Quasi-elastic neutron scattering (QENS) has been used to study the deviation from Debye-law harmonic behavior in lyophilized and hydrated apoferritin, a naturally occurring, multisubunit protein. Whereas analysis of the measured mean squared displacement (msd) parameter reveals a hydration-dependent inflection above 240 K, characteristic of diffusive motion, a hydration-independent inflection is observed at 100 K. The mechanism responsible for this low-temperature anharmonic response is further investigated, via analysis of the elastic incoherent neutron scattering intensity, by applying models developed to describe side-group motion in glassy polymers. Our results suggest that the deviation from harmonic behavior is due to the onset of methyl group rotations which exhibit a broad distribution of activated processes ( E a,ave = 12.2 kJ.mol (-1), sigma = 5.0 kJ x mol (-1)). Our results are likened to those reported for other proteins.  相似文献   

7.
NH(4)(C(6)H(5))(4)B represents a prototypical system for understanding aromatic H bonds. In NH(4)(C(6)H(5))(4)B an ammonium cation is trapped in an aromatic cage of four phenyl rings and each phenyl ring serves as a hydrogen bond acceptor for the ammonium ion as donor. Here the dynamical properties of the aromatic hydrogen bond in NH(4)(C(6)H(5))(4)B were studied by quasielastic incoherent neutron scattering in a broad temperature range (20< or =T< or =350 K). We show that in the temperature range from 67 to 350 K the ammonium ions perform rotational jumps around C(3) axes. The correlation time for this motion is the lifetime of the "transient" H bonds. It varies from 1.5 ps at T=350 K to 150 ps at T=67 K. The activation energy was found to be 3.14 kJ mol, which means only 1.05 kJ mol per single H bond for reorientations around the C(3) symmetry axis of the ammonium group. This result shows that the ammonium ions have to overcome an exceptionally low barrier to rotate and thereby break their H bonds. In addition, at temperatures above 200 K local diffusive reorientational motions of the phenyl rings, probably caused by interaction with ammonium-group reorientations, were found within the experimental observation time window. At room temperature a reorientation angle of 8.4 degrees +/-2 degrees and a correlation time of 22+/-8 ps were determined for the latter. The aromatic H bonds are extremely short lived due to the low potential barriers allowing for molecular motions with a reorientational character of the donors. The alternating rupture and formation of H bonds causes very strong damping of the librational motion of the acceptors, making the transient H bond appear rather flexible.  相似文献   

8.
Direct intramolecular cation-pi interaction between phenyl and pyridinium moieties in 1a(+) has been experimentally evidenced through pH-dependent (1)H NMR titration. The basicity of the pyridinyl group (pK(a) 2.9) in 1a can be measured both from the pH-dependent chemical shifts of the pyridinyl protons as well as from the protons of the neighboring phenyl and methyl groups as a result of electrostatic interaction between the phenyl and the pyridinium ion in 1a(+) at the ground state. The net result of this nearest neighbor electrostatic interaction is that the pyridinium moiety in 1a becomes more basic (pK(a) 2.92) compared to that in the standard 2a (pK(a) 2.56) as a consequence of edge-to-face cation (pyridinium)-pi (phenyl) interaction, giving a free energy of stabilization (DeltaDeltaG(o)pKa) of -2.1 kJ mol(-1). The fact that the pH-dependent downfield shifts of the phenyl and methyl protons give the pK(a) of the pyridine moiety of 1a also suggests that the nearest neighbor cation (pyridinium)-pi (phenyl) interaction also steers the CH (methyl)-pi (phenyl) interaction in tandem. This means that the whole pyridine-phenyl-methyl system in 1a(+) is electronically coupled at the ground state, cross-modulating the physicochemical property of the next neighbor by using the electrostatics as the engine, and the origin of this electrostatics is a far away point in the molecule-the pyridinyl-nitrogen. The relative chemical shift changes and the pK(a) differences show that the cation (pyridinium)-pi (phenyl) interaction is indeed more stable (DeltaDeltaG(o)pKa = -2.1 kJ mol(-1)) than that of the CH (methyl)-pi (phenyl) interaction (DeltaDeltaG(o)pKa = -0.8 kJ mol(-1)). Since the pK(a) of the pyridine moiety in 1a is also obtained through the pH-dependent shifts of both phenyl and methyl protons, it suggests that the net electrostatic mediated charge transfer from the phenyl to the pyridinium and its effect on the CH (methyl)-pi (phenyl) interaction corresponds to DeltaG(o)pKa of the pyridinium ion (approximately 17.5 kJ mol(-1)), which means that the aromatic characters of the phenyl and the pyridinium rings in 1a(+) have been cross-modulated owing to the edge-to-face interaction proportional to this DeltaG(o)pKa change.  相似文献   

9.
Low-temperature neutron scattering spectra of diammonium dodecahydro-closo-dodecaborate [(NH(4))(2)B(12)H(12)] reveal two NH(4)(+) rotational tunneling peaks (e.g., 18.5 μeV and 37 μeV at 4 K), consistent with the tetrahedral symmetry and environment of the cations. The tunneling peaks persist between 4 K and 40 K. An estimate was made for the tunnel splitting of the first NH(4)(+) librational state from a fit of the observed ground-state tunnel splitting as a function of temperature. At temperatures of 50 K-70 K, classical neutron quasi-elastic scattering appears to dominate the spectra and is attributed to NH(4)(+) cation jump reorientation about the four C(3) axes defined by the N-H bonds. A reorientational activation energy of 8.1 ± 0.6 meV (0.79 ± 0.06 kJ/mol) is determined from the behavior of the quasi-elastic linewidths in this temperature regime. This activation energy is in accord with a change in NH(4)(+) dynamical behavior above 70 K. A low-temperature inelastic neutron scattering feature at 7.8 meV is assigned to a NH(4)(+) librational mode. At increased temperatures, this feature drops in intensity, having shifted entirely to higher energies by 200 K, suggesting the onset of quasi-free NH(4)(+) rotation. This is consistent with neutron-diffraction-based model refinements, which derive very large thermal ellipsoids for the ammonium-ion hydrogen atoms at room temperature in the direction of reorientation.  相似文献   

10.
Extensive computational investigations along with additional quasielastic neutron scattering data were used to obtain a consistent picture of the extensive fluxionality of hydride and dihydrogen ligands in Fe(H)(2)(H(2))(PEtPh(2))(3) over a wide range of temperatures from 1.5 to 320 K. We were able to identify three different regimes in the dynamical processes based on activation energies obtained from line spectral broadening. The rotational tunneling lines (coherent exchange of the two hydrogens of the H(2) ligand) are broadened with increasing temperature by incoherent exchange up to about 80 K at which point they merge into a quasielastic spectrum from 100 K to about 225 K. The effective activation energies for the two regions are 0.14 and 0.1 kcal mol(-1), respectively. A third dynamical process with a higher activation energy of 0.44 kcal mol(-1) dominates above 225 K, which we attribute to a quantum dynamical exchange of dihydrogen and hydride ligands. Our detailed density functional theory (DFT) structural calculations involving the three functionals (B3LYP, TPSS, and wB97XD) provide a good account of the experimental structure and rotational barriers when only the hydrogen ligands are relaxed. Full relaxation of the "gas-phase" molecule, however, appears to occur to a greater degree than what is possible in the crystal structure. The classical dihydrogen-hydride exchange path involves a cis-dihydrogen and tetrahydride structure with energies of 6.49 and 7.38 kcal mol(-1), respectively. Experimental observation of this process with much lower energies would seem to suggest involvement of translational tunneling in addition to the rotational tunneling. Dynamics of this type may be presumed to be important in hydrogen spillover from metal particles, and therefore need to be elucidated in an effort to utilize this phenomenon.  相似文献   

11.
Dynamical properties of acyl chains in the three polymorphic phases alpha, beta', and beta of tristearin [C(3)H(5)(OCOC(17)H(35))3] have been studied by means of incoherent quasielastic neutron scattering (IQNS) using selectively deuterated samples. The mean square displacement of hydrogen atoms, , was estimated from the scattering vector Q dependence of the elastic scattering component under the harmonic approximation. It was shown that the temperature dependence of was significantly different between the three phases. There was no marked difference in between these phases up to 193 K, and the value increased linearly with temperature. Although the beta phase remained linear up to 293 K, the alpha and beta' phases started to show a nonlinear increase around 200 K, suggesting an anharmonic nature of molecular motions. The alpha phase exhibited the most conspicuous temperature dependence. These characteristics were ascribable to the difference in the lateral packing of acyl chains. Compared with the beta phase which has a tightly packed T// subcell, the beta' and alpha phases have looser O perpendicular and H subcells, respectively. The molecular motion in the alpha phase was analyzed using the model of uniaxial rotational diffusion in a onefold cosine potential. It has been clarified that the rotational fluctuation about the chain axis in the alpha phase is rather restricted compared with that in the rotator phase of n-alkanes.  相似文献   

12.
We have investigated the dynamics of phenylene rings in glassy bisphenol-A (BPA) polycarbonate (PC) by means of quasielastic neutron scattering. Taking advantage of selective deuteration of the samples, we have studied the incoherent scattering of hydrogens in phenylene rings on the one hand, and on the other hand the coherent quasielastic scattering of all the atoms in the sample. Two different types of neutron spectrometers, time of flight and backscattering, were used in order to cover a wide dynamic range, which extends from microscopic (approximately 10(-13) s) to mesoscopic (approximately 10(-9) s) times. Moreover, neutron-diffraction experiments with polarization analysis were carried out in order to characterize the structural features, and the relative coherent and incoherent contributions of the samples investigated. In contrast with previous studies of phenylene ring dynamics in BPA polysulfone performed by us also by neutron scattering, phenylene rings in BPA PC exhibit an "extra" motion in addition to those found for BPA polysulfone's phenylene rings. This extra motion of the rings in PC perfectly correlates with the main carbonate group motion followed by dielectric spectroscopy and allows us to (i) consistently interpret the PC's gamma relaxation in terms of two different motions; and (ii) experimentally confirm the relation between the motion of phenylene rings and carbonate groups within BPA PC formerly predicted by computational methods.  相似文献   

13.
In the perchloric acid clathrate hydrate HClO4.5.5H2O, the perchlorate anions are contained inside an aqueous host crystalline matrix, positively charged because of the presence of delocalized acidic protons. Our experimental results demonstrate that the microscopic mechanisms of proton conductivity in this system are effective on a time scale ranging from nanosecond to picosecond. In the present paper, we discuss more specifically on the relaxation processes occurring on a nanosecond time scale by combining high-resolution quasielastic neutron scattering and 1H pulse-field-gradient nuclear magnetic resonance experiments. The combination of these two techniques allows us to probe proton dynamics in both space and time domains. The existence of two types of proton dynamical processes has been identified. The slowest one is associated to long-range translational diffusion of protons between crystallographic oxygen sites and has been precisely characterized with a self-diffusion coefficient of 3.5 x 10(-8) cm2/s at 220 K and an activation energy of 29.2+/-1.4 kJ/mol. The fastest dynamical process is due to water molecules' reorientations occurring every 0.7 ns at 220 K with an activation energy of 17.4+/-1.5 kJ/mol. This powerful multitechnique approach provides important information required to understand the microscopic origin of proton transport in an ionic clathrate hydrate.  相似文献   

14.
Density functional theoretical methods, including several basis sets and two functional, were used to collect information on the structure and energetic parameters of poly(ethylene glycol) (PEG), also referred to as poly(ethylene oxide) (PEO), coordinated by alkali metal ions. The oligomer chain is found to form a spiral around the alkali cation, which grows to roughly two helical turns when the oligomer size increases to about the decamer for each alkali ion. Above this size, the additional monomer units do not build the spiral further for Li(+) and Na(+); instead, they form less organized segments outside or next to the initial spiral. The distance of the first layer of co-ordinating O atoms from the alkali cation is 1.9-2.15 ? for Li(+), 2.3-2.5 ? for Na(+), 2.75-3.2 ? for K(+) and 3.5-3.8 ? for Cs(+) complexes. The number of O atoms in the innermost shell is five, six, seven and eleven for Li(+), Na(+), K(+) and Cs(+). The collision cross sections with He increase linearly with the oligomer to a very good approximation. No sign of leaning towards the 2/3 power dependence characterizing spherical particles is observed. The binding energy of the cation to the oligomer increases up to polymerization degree of about 10, where it levels off for each alkali-metal ion, indicating that this is approximately the limit of the oligomer size that can be influenced by the alkali cation. The binding energy-degree of polymerization curves are remarkably parallel for the four cations. The limiting binding energy at large polymerization degrees is about 544 kJ mol(-1), 460 kJ mol(-1), 356 kJ mol(-1) and 314 kJ mol(-1) for Li, Na, K and Cs, respectively. The geometrical features are compared with the X-ray and neutron diffraction data on crystalline and amorphous phases of conducting polymers formed by alkali-metal salts and PEG. The implications of the observations concerning collision cross sections and binding energies to ion mobility spectroscopy and mass spectrometry are discussed.  相似文献   

15.
We used high-resolution quasielastic neutron scattering spectroscopy to study the single-particle dynamics of water molecules on the surface of hydrated DNA samples. Both H(2)O and D(2)O hydrated samples were measured. The contribution of scattering from DNA is subtracted out by taking the difference of the signals between the two samples. The measurement was made at a series of temperatures from 270 down to 185 K. The relaxing-cage model was used to analyze the quasielastic spectra. This allowed us to extract a Q-independent average translational relaxation time of water molecules as a function of temperature. We observe clear evidence of a fragile-to-strong dynamic crossover (FSC) at T(L)=222+/-2 K by plotting log versus T. The coincidence of the dynamic transition temperature T(c) of DNA, signaling the onset of anharmonic molecular motion, and the FSC temperature T(L) of the hydration water suggests that the change of mobility of the hydration water molecules across T(L) drives the dynamic transition in DNA.  相似文献   

16.
The present work reports the electrical properties of high-purity single-crystal TiO(2) from measurements of the electrical conductivity in the temperature range 1073-1323 K and in gas phases of controlled oxygen activities in the range 10(-13) to 10(5) Pa. The effect of the oxygen activity on the electrical conductivity indicates that oxygen vacancies are the predominant defects in the studied ranges of temperature and oxygen activities. The electronic and ionic lattice charge compensations were revealed at low and high oxygen activities, respectively. The determined semiconducting quantities include: the activation energy of the electrical conductivity (E(sigma) = 125-205 kJ.mol(-1)), the activation energies of the electrical conductivity components associated with electrons (E(n) = 218 kJ.mol(-1)), electron holes (E(p) = 34 kJ.mol(-1)), and ions (E(i) = 227 kJ.mol(-1)), and the enthalpy of motion for electronic defects (DeltaH(m) = 4 kJ/mol). The electrical conductivity data are considered in terms of the components related to electrons, holes, and ions. The obtained data allow the determination of the n-p demarcation line in terms of temperature and oxygen activities. The band gap determined from the electronic component of the electrical conductivity is 3.1 eV.  相似文献   

17.
Fourier transform ion cyclotron resonance mass spectrometry has been used to study the temperature and deuterium isotope effects on the methyl cation transfer reaction between protonated dimethyl ether and dimethyl ether to produce trimethyloxonium cation and methanol. From the temperature dependence of this bimolecular reaction it was possible to obtain thermodynamic information concerning the energy barrier for methyl cation transfer for the first time. From the slope of an Arrhenius plot, a value for DeltaH(++) of -1.1 +/- 1.2 kJ mol(-1) was obtained, while from the intercept a value for DeltaS(++) of -116 +/- 15 J K(-1) mol(-1) was derived. This yields a DeltaG(++)(298) value of 33.7 +/- 2.1 kJ mol(-1). All thermodynamic values were in good agreement with ab initio calculations. Rate constant ratios for the unimolecular dissociation forming trimethyloxonium cation and the dissociation re-forming reactants were extracted from the apparent bimolecular rate constant. Attempts at modeling the temperature dependence and isotope effects of the unimolecular dissociation forming trimethyloxonium cation were also made.  相似文献   

18.
Discotic molecules have planar, disklike polyaromatic cores that can self-assemble into "molecular wires". Highly anisotropic charge transfer along the wires arises when there is sufficient intermolecular overlap of the pi-orbitals of the molecular cores. Discotic materials can be applied in molecular electronics, field-effect transistors, and-recently with record quantum efficiencies-photovoltaics (Schmidt-Mende, L.; Fechtenk?tter, A.; Müllen, K.; Moons, E.; Frien, R. H.; MacKenzie, J. D. Science 2001, 293, 1119). A combination of quasielastic neutron scattering (QENS) measurements with molecular dynamics simulations on the discotic molecule hexakis(n-hexyloxy)triphenylene (HAT6) shows that the dynamics of the cores and tails of discotic molecules are strongly correlated. Core and tail dynamics are not separated, the system being characterized by overall in-plane motion, on a time scale of 0.2 ps, and softer out-of-plane motions at 7 ps. Because charge transfer between the molecules is on similar time scales, these motions are relevant for the conducting properties of the materials. Both types of motion are dominated by van der Waals interactions. Small-amplitude in-plane motions in which the disks move over each other are almost entirely determined by tail/tail interactions, these also playing an important role in the out-of-plane motion. The QENS measurements reveal that these motions are little changed by passing from the columnar phase to the isotropic liquid phase, just above the clearing temperature. The model of four HAT6 molecules in a column reproduces the measured QENS spectrum of the liquid phase, suggesting that correlations persist within the liquid phase over about this number of disks.  相似文献   

19.
We have performed the heat capacity, neutron diffraction, and neutron quasielastic scattering measurements of an ionic liquid 1-octyl-3-methylimidazolium chloride (C8mimCl). The heat capacity data revealed that C8mimCl exhibits a glass transition with a large heat capacity jump at T(g) = 214 K, which is lower than T(g) of C4mimCl with a shorter alkyl-chain. In the neutron diffraction measurement for a deuterated analogue, d-C8mimCl, the peaks associated with the inter-domain, inter-ionic, and inter-alkyl-chain correlations appeared at (3, 11, and 14) nm(-1), respectively. The temperature dependence of these peaks indicates that the packing of the alkyl-chains becomes more compact and the domains become more vivid and larger as decreasing temperature. The quasielastic neutron scattering measurements using neutron spin echo and time-of-flight type instruments demonstrated that C8mimCl has faster relaxations probably owing to the alkyl-group and a slower relaxation owing to the ions. The latter relaxation, which is related to the glass transition, is of non-exponential as in the α relaxation of glass-forming molecular liquids. The relaxation of domains could not be observed in the present experiment but should have relaxation times longer than 100 ns. This is the first report to clarify temperature dependence of the hierarchical structure and relaxations simultaneously for a typical ionic liquid.  相似文献   

20.
We investigated molecular motions on a picosecond timescale of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) model membranes as a function of hydration by using elastic and quasielastic neutron scattering. Two different hydrations corresponding to approximately nine and twelve water molecules per lipid were studied, the latter being the fully hydrated state. In our study, we focused on head group motions by using chain deuterated lipids. Information on in-plane and out-of-plane motions could be extracted by using solid supported DMPC multilayers. Our studies confirm and complete former investigations by Ko?nig et al. [J. Phys. II (France) 2, 1589 (1992)] and Rheinsta?dter et al. [Phys. Rev. Lett. 101, 248106 (2008)] who described the dynamics of lipid membranes, but did not explore the influence of hydration on the head group dynamics as presented here. From the elastic data, a clear shift of the main phase transition from the P(β) ripple phase to the L(α) liquid phase was observed. Decreasing water content moves the transition temperature to higher temperatures. The quasielastic data permit a closer investigation of the different types of head group motion of the two samples. Two different models are needed to fit the elastic incoherent structure factor and corresponding radii were calculated. The presented data show the strong influence hydration has on the head group mobility of DMPC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号