首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 105 毫秒
1.
The dynamic self-assembly mechanism of fullerene molecules is an irreversible process emerging naturally under the nonequilibrium conditions of hot carbon vapor and is a consequence of the interplay between the dynamics and chemistry of polyyne chains, pi-conjugation and corresponding stabilization, and the dynamics of hot giant fullerene cages. In this feature article we briefly present an overview of experimental findings and past attempts to explain fullerene formation and show in detail how our recent quantum chemical molecular dynamics simulations of the dynamics of carbon vapor far from thermodynamic equilibrium have assisted in the discovery of the combined size-up/size-down "shrinking hot giant" road that leads to the formation of buckminsterfullerene C60, C70, and larger fullerenes. This formation mechanism is the first reported case of order created out of chaos where a distinct covalent bond network of an entire molecule is spontaneously self-assembled to a highly symmetric structure and fully explains the fullerene formation process consistently with all available experimental observations a priori. Experimental evidence suggests that it applies universally to all fullerene formation processes irrespective of the carbon source.  相似文献   

2.
Unconventional fullerenes are those smaller than C(60) or those intermediate between C(60) and C(70), which are not stable in structure as none of the unconventional fullerene isomers satisfying the "isolated-pentagon-rule" (IPR). Below we report the synthesis of a stable unconventional fullerene derivative C(64)H(4) by introducing methane in the fullerene productions with the normal Kr?tschmer-Huffman method. We also applied various spectroscopic measurements such as mass spectrometry, (13)C NMR, IR, UV-vis absorption spectrometry, etc. to characterize the structural and electronic properties of this molecule, revealing an unprecedented fullerene cage with a triplet of directly fused pentagons in the framework of C(64)H(4). Four hydrogen atoms are added to the carbons at vertexes of fused pentagons to allow the bond angles at these sites close to the sp(3) tetrahedral angle, which essentially release the sp(2) bond strains on the abutting-pentagon sites of C(64). Ab initio calculations were performed to explore the electronic property and simulate the (13)C NMR and IR spectra of this fulleride, which reproduced well the experimental results and confirmed the structural assignment of the C(64)H(4).  相似文献   

3.
We report a photoassisted method to magnetize microcrystal fullerene C(60) at room temperature by exciting it to triplet states via a proper laser radiation and then trapping the spin-polarized states under a strong magnetic field. Novel changes on Raman scattering of the C(60) microcrystals were observed in the presence and absence of the magnetic field. In particular, the Raman spectra were found to exhibit a "hysteresis" phenomenon when the external magnetic field was removed. In light of this, we propose magnetic-field-trapped Raman spectroscopy (MFTRS) and employ first-principle calculations to reproduce the Raman activities of C(60) at different states. Further, MFTRS of the fullerene is demonstrated to originate from its photoassisted magnetization (PAM). The PAM strategy enables the magnetization of materials which consist of only light elements; meanwhile, the MFTRS investigation may open a new research field in Raman spectroscopy.  相似文献   

4.
The Bingel–Hirsch reaction of (R)-2,2-dichloro-N-(1-phenylethyl)acetamide with fullerene C60 gave the corresponding methanofullerene, and its electrochemical and physical properties were studied. The electron-acceptor characteristics of the new compound were found to be similar to those of the known methanofullerene [60]PCBM.  相似文献   

5.
To investigate the implications of the unique properties of fullerenes on their interaction with and passive transport into lipid membranes, atomistic molecular dynamics simulations of a C60 fullerene in a fully hydrated di-myristoyl-phoshatidylcholine lipid membrane have been carried out. In these simulations the free energy and the diffusivity of the fullerene were obtained as a function of its position within the membrane. These properties were utilized to calculate the permeability of fullerenes through the lipid membrane. Simulations reveal that the free energy decreases as the fullerene passes from the aqueous phase, through the head group layer and into the hydrophobic core of the membrane. This decrease in free energy is not due to hydrophobic interactions but rather to stronger van der Waals (dispersion) interactions between the fullerene and the membrane compared to those between the fullerene and (bulk) water. It was found that there is no free energy barrier for transport of a fullerene from the aqueous phase into the lipid core of the membrane. In combination with strong partitioning of the fullerenes into the lipidic core of the membrane, this "barrierless" penetration results in an astonishingly large permeability of fullerenes through the lipid membrane, greater than observed for any other known penetrant. When the strength of the dispersion interactions between the fullerene and its surroundings is reduced in the simulations, thereby emulating a nanometer sized hydrophobic particle, a large free energy barrier for penetration of the head group layer emerges, indicating that the large permeability of fullerenes through lipid membranes is a result of their unique interaction with their surrounding medium.  相似文献   

6.
A fullerene graph is a cubic and 3-connected plane graph (or spherical map) that has exactly 12 faces of size 5 and other faces of size 6, which can be regarded as the molecular graph of a fullerene. T. Doli [3] obtained that a fullerene graph with p vertices has at least (p+2)/2 perfect matchings by applying the recently developed decomposition techniques in matching theory of graphs. This note gets a better lower bound 3(p+2)/4 of the number of perfect matchings of a fullerene graph by finding its 2-extendability. This property further implies a chemical consequence that every derivative of a fullerene by substituting any two pairs of adjacent carbon atoms permits a Kekulé structure.  相似文献   

7.
Mass spectra of the epoxy methylated[60]fullerenols were obtained by EI mass spectrometry using "desorption" or "in-beam" technique. The mass spectra have an intense molecular monocation peak M(+) and a weak dication peak M(++), revealing the stability of these products under the MS (EI) conditions. The remaining peaks correspond to the successive loss of methyl groups and oxygen atoms for which the pure fullerene represents a more stable product. The distinction between the multiply charged fullerene C(60)(z+) and their fragments with equal m/z was also studied.  相似文献   

8.
In this work, the decay rate of fullerene ion beams as well as its dependence on the flight time from standard plasma type ion source has been studied. We have performed direct measurements of the decay probability of each fullerene ion (n=44 to 70) using two energy analyzers. The experimental results are well accounted for in terms of the concept of evaporating ensemble for the behavior of fullerenes in the continuous arc-discharge ion source. The obtained individually different internal energy distributions for fullerenes from C 44 + to C 68 + are for the first time presented.  相似文献   

9.
A calix[4]arene scaffolding has been used to construct bisporphyrin ("jaws" porphyrin) hosts for supramolecular binding of fullerene guests. Fullerene affinities were optimized by varying the nature of the covalent linkage of the porphyrins to the calixarenes. Binding constants for C60 and C70 in toluene were explored as a function of substituents at the periphery of the porphyrin, and 3,5-di-tert-butylphenyl groups gave rise to the highest fullerene affinities (26,000 M(-1) for C60). The origin of this high fullerene affinity has been traced to differential solvation effects rather than to electronic effects. Studies of binding constants as a function of solvent (toluene < benzonitrile < dichloromethane < cyclohexane) correlate inversely with fullerene solubility, indicating that desolvation of the fullerene is a major factor determining the magnitude of binding constants. The energetics of fullerene binding have been determined in terms of DelatH and DeltaS and are consistent with an enthalpy-driven, solvation-dependent process. A direct relationship between supramolecular binding of a fullerene guest to a bisporphyrin host and the appearance of a broad NIR absorption band have been established. The energy of this band moves in a predictable manner as a function of the electronic structure of the porphyrin, thereby establishing its origin in porphyrin-to-fullerene charge transfer.  相似文献   

10.
Aucagne V  Leigh DA 《Organic letters》2006,8(20):4505-4507
A methodology for the successive regiospecific "clicking" together of three components in one pot via two triazole linkages is reported. The protocol utilizes copper(I)-mediated alkyne-azide cycloaddition reactions combined with a silver(I)-catalyzed TMS-alkyne deprotection under mild hydroalcoholic conditions. We exemplify the approach with peptide-based components to illustrate its compatibility with polyfunctionalized biomolecules. The method constitutes a promising tool for peptide ligation. We also provide a procedure for directly using TMS-alkynes as the cycloaddition partner in classical "click" chemistry.  相似文献   

11.
We report the formation of a fullerene-peptide conjugate via the incorporation of a fullerene substituted phenylalanine derivative, "Bucky amino acid" (Baa), to a cationic peptide, which acts as a passport for intracellular delivery, enabling transport of a range of sequences into HEK-293, HepG2, and neuroblastoma cells where the peptides in the absence of the fullerene amino acid cannot enter the cell. Delivery of the fullerene species to either the cytoplasm or nucleus of the cell is demonstrated. Fullerene peptides based on the nuclear localization sequence (NLS), H-Baa-Lys(FITC)-Lys-Lys-Arg-Lys-Val-OH, can actively cross over the cell membrane and accumulate significantly around the nucleus of HEK-293 and neuroblastoma cells, while H-Baa-Lys(FITC)-Lys8-OH accumulates in the cytoplasm. Cellular studies show that the uptake for the anionic peptide Baa-Lys(FITC)Glu4Gly3Ser-OH is greatly reduced in comparison with the cationic fullerene peptides of the same concentration. The hydrophobic nature of the fullerene assisting peptide transport is suggested by the effect of gamma-cyclodextrin (CD) in lowering the efficacy of transport. These data suggest that the incorporation of a fullerene-based amino acid provides a route for the intracellular delivery of peptides and as a consequence the creation of a new class of cell penetrating peptides.  相似文献   

12.
The first‐principles density functional theory (DFT) and its time‐dependent approach (TD‐DFT) are used to characterize the electronic structures and optical spectra properties of five chemically modified fullerenes. It is revealed that the metal fullerene derivatives possess not only stronger absorption bands in visible light regions than organically modified fullerene but also the large energy gaps (ΔES–T > 0.98 eV) between the singlet ground state and the triplet state, which imply their significant aspect of potential candidates as a photosensitizer. We have found that a new metal‐containing bisfullerene complexes (Pt(C60)2), with the extended conjugated π‐electrons, much degenerate orbitals and a uniform electrostatic potential surface, behave more pre‐eminent photosensitizing properties than other examined fullerene derivatives. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
Low-temperature (77 K) radiolysis of solid fullerene C60 and its glassy solutions in isopropylbenzene (IPB) and N-vinylpyrrolidone (N-VP) has been investigated with the use of ESR spectroscopy. Radiationchemical yields for the formation of paramagnetic centers (G PMC, 1/100 eV) have been determined to be ∼0.001 for pure fullerene and 0.3 and 0.7 for its solutions in IPB and N-VP, respectively. The low value of G PMC for fullerene indicates a high stability of this form of carbon. The increase in G PMC in solutions as compared to the pure solvents (0.15 for IPB and 0.3 for N-VP) indicates the sensitizing effect of C60.  相似文献   

14.
1,2-Dihydromethano[60]fullerene and its congeners have attracted much interest, but they have been synthesized only in very low yields because of several insurmountable problems. A new three-stage synthesis involving addition of a silylmethylmagnesium chloride to [60]- and [70]fullerene and oxidation of the anionic intermediate with CuCl(2) afforded the methano[60]- and methano[70]fullerenes in 90% and 70% overall yield, respectively. The reaction with 1,4-diorgano[60]fullerene also proceeded smoothly to give a diastereomerically pure 56-π-electron fullerene that has a higher LUMO level than the parent fullerene and gave a higher open-circuit voltage and better power conversion efficiency when fabricated into an organic photovoltaic device.  相似文献   

15.
The poly(methyl methacrylates) of branched structure with a covalently bonded fullerene were synthesized by three-dimensional radical polymerization of methyl methacrylate with triethylene glycol dimethacrylate or allyl methacrylate in toluene containing C60. The kinetics of copolymerization of methyl methacrylate with multifunctional co-monomers in the absence of fullerene is compared with that in its presence. The physicochemical characteristics and thermal stability of the obtained copolymers are also compared. The electron spin resonance (ESR) method was applied to study the kinetics of accumulation of the fullerene radicals in the course of the (co)polymerization of methyl methacrylate.  相似文献   

16.
Two-component adlayers consisting of zinc(II) phthalocyanine (ZnPc) and a metalloporphyrin, such as zinc(II) octaethylporphyrin (ZnOEP) or zinc(II) tetraphenylporphyrin (ZnTPP), were prepared by immersing either an Au(111) or Au(100) substrate in a benzene solution containing those molecules. The bimolecular adlayers thus prepared were investigated in 0.1 M HClO4 by cyclic voltammetry (CV) and electrochemical scanning tunneling microscopy (EC-STM). A supramolecularly organized "chessboard" structure was formed for the ZnPc and ZnOEP bimolecular array on Au(111), while characteristic nanohexagons were found in the ZnTPP and ZnOEP bimolecular adlayer. EC-STM revealed that the surface mobility and the molecular re-organization of ZnPc and ZnOEP on Au(111) were tunable by manipulating the electrode potential, whereas the ZnTPP and ZnOEP bimolecular array was independent of the electrode potential. A "bottom-up" hybrid assembly of fullerene molecules was formed successfully on an alternate array of bimolecular ZnPc and ZnOEP molecules. The bimolecular "chessboard" served as a template to form the supramolecular assembly of C60 by selective trapping in the open spaces. A supramolecular organization of ZnPc and ZnOEP was also found on the reconstructed Au(100)-(hex) surface. A highly ordered, compositionally disordered but alternate array of ZnPc and ZnOEP was formed on the reconstructed Au(100)-(hex) surface, indicating that the bimolecular adlayer structure is dependent on the atomic arrangement of underlying Au in the formation of supramolecular nanostructures composed of those molecules. On the bimolecular array consisting of ZnPc and ZnOEP on the Au(100)-(hex), no highly ordered supramolecular assembly of C60 was found, suggesting that the supramolecular assembly of C60 molecules is strongly dependent upon the bimolecular packing arrangement of ZnPc and ZnOEP.  相似文献   

17.
A new [60]fullerene diol is synthesized in good yield, in two steps starting from reaction of C602− anion with the benzylideneacetal derived from 2,2-bis(iodomethyl)-1,3-propanediol. The corresponding [60]fullerene bis-mesylate is also formed in a similar way starting from bis-iodo bis-mesylate compound in the same series. The scope of this fullerene diol in synthesis is exemplified by its easy esterification with 4-formyl benzoyl chloride.  相似文献   

18.
The C60 polyarenes 4, 5, 18 a, and 18 b have been synthesized from truxene by triple alkylation at C5, C10, and C15 followed by a palladium-catalyzed intramolecular arylation. The synthesis of "crushed fullerene" C60H30 (2) is the most efficient reported to date and proceeds in 33% overall yield.  相似文献   

19.
We performed a constrained search, combined with density-functional theory optimization, of low-energy geometric structures of silicon clusters Si(39), Si(40), Si(50), Si(60), Si(70), and Si(80). We used fullerene cages as structural motifs to construct initial configurations of endohedral fullerene structures. For Si(39), we examined six endohedral fullerene structures using all six homolog C(34) fullerene isomers as cage motifs. We found that the Si(39) constructed based on the C(34)(C(s):2) cage motif results in a new leading candidate for the lowest-energy structure whose energy is appreciably lower than that of the previously reported leading candidate obtained based on unbiased searches (combined with tight-binding optimization). The C(34)(C(s):2) cage motif also leads to a new candidate for the lowest-energy structure of Si(40) whose energy is notably lower than that of the previously reported leading candidate with outer cage homolog to the C(34)(C(1):1). Low-lying structures of larger silicon clusters Si(50) and Si(60) are also obtained on the basis of preconstructed endohedral fullerene structures. For Si(50), Si(60), and Si(80), the obtained low-energy structures are all notably lower in energy than the lowest-energy silicon structures obtained based on an unbiased search with the empirical Stillinger-Weber potential of silicon. Additionally, we found that the binding energy per atom (or cohesive energy) increases typically >10 meV with addition of every ten Si atoms. This result may be used as an empirical criterion (or the minimal requirement) to identify low-lying silicon clusters with size larger than Si(50).  相似文献   

20.
Prolonged hydrogenation of C(60) molecules by reaction with H(2) at elevated temperature and pressure results in fragmentation and collapse of the fullerene cage structure. However, fragments can be preserved by immediate termination of dangling bonds by hydrogen. Here we demonstrate that not only fullerene fragments but also hydrogenated fragmented fullerenes (e.g., C(58)H(40) and C(59)H(40)) can be synthesized in bulk amount by high-temperature hydrogenation of C(60). We confirm successful synthesis of these species by matrix-assisted laser desorption ionization time-of-flight mass spectrometry and complete speciation of the resultant complex fullerene mixtures by high-resolution field desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号