首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 313 毫秒
1.
A rapid, sensitive and specific method for quantifying piracetam in human plasma using Piracetam d‐8 as the internal standard (IS) is described. The analyte and the IS were extracted from plasma by one‐step precipitation of protein using an acetonitrile (100%). The extracts were analyzed by high‐performance liquid chromatography coupled with electrospray tandem mass spectrometry (HPLC‐MS/MS). The method had a chromatographic run time of 3.8 min and a linear calibration curve over the range 0.5–50 µg/mL (r > 0.99). This LC‐MS‐MS procedure was used to assess the bioavailability of two piracetam formulations: piracetam + l‐carnitine (Piracar®; 270/330 mg tablet) and piracetam (Nootropil®; 800 mg tablet) in healthy volunteers of both sexes. The geometric means with corresponding 90% confidence interval (CI) for test/reference percentage ratios were 88.49% (90% CI = 81.19 – 96.46) for peak concentration/dose and 102.55% (90% CI = 100.62 – 104.51) for AUCinf/dose. The limit of quantitation of 0.5 µg/mL is well suited for pharmacokinetic studies in healthy volunteers. It was concluded that piracetam (Piracar®; 270/330 mg tablet) has a bioavailability equivalent to the piracetam (Nootropil®; 800 mg tablet) formulation with regard to both the rate and the extent of absorption. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
This study presents a high‐performance liquid chromatography–tandem mass spectrometry (HPLC–MS/MS) method for the simultaneous determination of antofloxacinin and its main metabolite – N ‐demethylated metabolite (N‐ DM) – in human urine. Ornidazole was used as the internal standard. This was a clinical urine recovery study, in which 10 healthy Chinese volunteers were intravenously administered a single 200 mg dose of antofloxacin hydrochloride. Compounds were extracted by albumen precipitation, after which samples were isocratically eluted using a Poroshell 120 SB‐C18 column, and were analysed using HPLC–MS/MS under electronic spray ionization positive ion mode. The method was successfully applied in a urine pharmacokinetic study of antofloxacinin, with a detection range of 0.02/0.01 to 200/100 μg/mL (for antofioxacin/N‐ DM).The average percentages of antofioxacin/N‐ DM measured in urinary excretion frp, 10 volunteers were 54.9 ± 5.7/8.2 ± 2.5% in 120 h duration.  相似文献   

3.
Humantenmine (HMT), the most toxic compound isolated from Gelsemium elegans Benth , is a well‐known active herbal compound. A rapid and sensitive ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) method was developed and validated to estimate the absolute oral bioavailability of HMT in rats. Quantification was performed by multiple reaction monitoring using electrospray ionization operated in positive ion mode with transitions of m/z 327.14 → m/z 296.19 for HMT and m/z 323.20 → m/z 236.23 for gelsemine (internal standard, IS). The linear range of the calibration curve was 1–256 nmol/L, with a lower limit of quantification at 1 nmol/L. The accuracy of HMT ranged from 89.39 to 107.5%, and the precision was within 12.24% (RSD). Excellent recovery and negligible matrix effect were observed. HMT remained stable during storage, preparation and analytical procedures. The pharmacokinetics of HMT in rats showed that HMT reached the concentration peak at 12.50 ± 2.74 min with a peak concentration of 28.49 ± 6.65 nmol/L, and the corresponding area under the concentration–time curve (AUC0–t ) was 1142.42 ± 202.92 nmol/L min after 200 μg/kg HMT was orally administered to rats. The AUC0–t of HMT given at 20 μg/kg by tail vein administration was 1518.46 ± 192.24 nmol/L min. The calculated absolute bioavailability of HMT was 7.66%.  相似文献   

4.
A rapid, simple and sensitive LC‐MS/MS method for the quantification of vinflunine in plasma was developed and validated. The analysis involved a simple liquid–liquid extraction. After making alkaline with NaOH, plasma was extracted with methyl tert‐butyl ether and the organic extract was then evaporated and the residue was reconstituted in mobile phase. The reconstituted solution was injected into an HPLC system and was subjected to reverse‐phase HPLC on a 5 µm ODS‐3 column at a flow‐rate of 0.2 mL/min. The mobile phase consisted of ammonium acetate (0.02 mol/L, pH = 3.0) and acetonitrile (20:80). Vinflunine was detected in the single ion monitoring mode using target ions at m/z 817.4/160.1/142.3 for vinflunine and m/z 447.2/128.3/112.1 for gefitinib (internal standard). Standard curves were linear over the concentration range of 5–1000 ng/mL. The mean predicted concentrations of the quality control samples deviated by less than 2% from the corresponding nominal values; the intra‐assay and inter‐assay precisions of the assay were within 7% relative standard deviation. The extraction recovery of vinflunine was more than 80%. The validated assay was applied to a pharmacokinetic study of vinflunine in plasma following the administration of a single vinflunine injection (2 mg/kg). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
Docetaxel, frequently used for the treatment of breast cancer, is mainly metabolized via hepatic cytochrome P450 (CYP) 3A in humans and is also a substrate of P‐glycoprotein (P‐gp). Wogonin has been shown to be able to modulate the activities of CYPs and P‐gp, and it could serve as an adjuvant chemotherapeutic agent. However, the impacts of co‐administration of wogonin and docetaxel on their pharmacokinetics have not been studied because of a lack of an analytical method for their simultaneous measurement. In the present study, we established an HPLC–MS/MS method for simultaneous measurement of wogonin and docetaxel in rat plasma, and it was then utilized to explore the pharmacokinetics of wogonin and the herb–drug interactions between wogonin and docetaxel after their combined administration in rats with mammary tumors. The rats received 10, 20 and 40 mg/kg wogonin via oral administration, with or without docetaxel intravenously administered at 10 mg/kg, and the plasma concentrations of wogonin and docetaxel were measured using the established and validated HPLC–MS/MS method. The Cmax and AUC0–t of wogonin were proportionally increased in the dose range from 10 to 40 mg/kg, suggesting a linear pharmacokinetics of wogonin. Moreover, the Cmax and AUC0–t of docetaxel and the AUC0–t of wogonin were increased after co‐administration (p < 0.05), indicating increased in vivo exposures of both wogonin and docetaxel, which might lead to an increase in not only therapeutic but also toxic effects. Thus the alterations of pharmacokinetics should be taken into consideration when wogonin and docetaxel are co‐administered.  相似文献   

6.
Leonurine (SCM‐198), an alkaloid from Herba Leonuri, has been suggested as a novel cardiovascular agent by pharmacology studies in preclinical stage. In present study, we report a simple, rapid and sensitive high‐performance liquid chromatography–tandem mass spectrometry method (HPLC‐MS/MS) for determination of leonurine in rat plasma. Leonurine and its internal standard (IS) n‐benzoyl‐l ‐arginine ethyl ester (BAEE) were extracted from plasma samples by one‐step protein precipitation with perchloric acid. Chromatographic separation was performed on an Agilent Zorbax SB‐C18 column (150 × 2.1 mm, 5 µm) using an isocratic elution with acetonitrile–ammonium acetate buffer (10 mm , pH 4.0; 25:75, v/v) as mobile phase at a flow rate of 0.2 mL/min. Analytes were detected by tandem mass spectrometry in positive electrospray ionization (ESI) mode using multiple reaction monitoring (MRM) with the transitions of m/z 312.3 → 181.1 for leonurine and m/z 307.2 → 104.6 for IS. The calibration curves were linear over the range of 4–256 ng/mL with a lower limit of quantitation (LLOQ) of 4 ng/mL. The intra‐ and inter‐day assay precision (as relative standard deviation) were <15%, except which at LLOQ were <20%, with accuracy in the range 98.73‐105.42%. The validated HPLC‐MS/MS method was successfully applied to the pharmacokinetic study in rats following oral administration of leonurine. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Luteoloside is a potential anticarcinogenic component isolated from Lonicera japonica, a traditional Chinese medicine (TCM). This study details the development and validation of a sensitive and accurate HPLC‐ESI‐MS/MS method for the quantification of luteoloside in dog plasma. Sample pretreatment includes simple protein precipitation using methanol–acetonitrile (1:1, v/v). A Phenomenex Gemini C18 column (2.0 × 50 mm, i.d., 3.5 µm) was used to separate luteoloside and internal standard by gradient mode with mobile phase consisting of water containing 0.1% formic acid and methanol containing 0.1% formic acid at a flow rate of 0.40 mL/min with a column temperature of 25°C. The detection was performed by positive ion electrospray ionization (ESI) in multiple reaction monitoring mode. The calibration curves were linear (R > 0.995) over the concentration range 1.0–2000 ng/mL and the lower limit of quantification was 1.0 ng/mL. The intra‐day and inter‐day precisions (RSD) were all <15%, accuracies (RE) were within the range of ±15%, and recoveries were between 85.0 and 115%. The validated HPLC‐ESI‐MS/MS method was successfully applied to determine plasma concentrations of luteoloside after intravenous administration of luteoloside at a dose level of 20 mg/kg. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
An HPLC separation method with triethylammonium acetate mobile phase additive developed for the analysis of impurities in polysulphonated azo dyes provides good separation selectivity and compatibility with electrospray ionisation (ESI) mass spectrometry. The negative‐ion ESI mass spectra containing only peaks of deprotonated molecules [M–H] for monosulphonic acids, [M–xH]x, and sodiated adducts [M–(x + y)H + yNa]x for polysulphonic acids allow easy molecular mass determination of unknown impurities. Based on the knowledge of the molecular masses and of the fragment ions in the MS/MS spectra, probable structures of trace impurities in commercial dye samples are proposed. To assist in the interpretation of the mass spectra of complex polysulphonated azodyes, additional information can be obtained after chemical reduction of azodyes to aromatic amines. The structures of the non‐sulphonated reduction products can be determined by reversed‐phase HPLC/MS with positive‐ion atmospheric pressure chemical ionisation and of the sulphonated products by ion‐pairing HPLC/MS with negative‐ion ESI.  相似文献   

9.
A selective, sensitive and rapid high‐performance liquid chromatography–tandem mass spectrometry (HPLC‐MS/MS) method was developed and validated to determine metformin and glipizide simultaneously in human plasma using phenacetin as internal standard (IS). After one‐step protein precipitation of 200 μL plasma with methanol, metformin, glipizide and IS were separated on a Kromasil Phenyl column (4.6 × 150 mm, 5 µm) at 40°C with an isocratic mobile phase consisting of methanol–10 mmol/L ammonium acetate (75:25, v/v) at a flow rate of 0.35 mL/min. Electrospray ionization source was applied and operated in the positive mode. Multiple reaction monitoring using the precursor → product ion combinations of m/z 130 → m/z 71, m/z 446 → m/z 321 and m/z 180 → m/z 110 were used to quantify metformin, glipizide and IS, respectively. The linear calibration curves were obtained over the concentration ranges 4.10–656 ng/mL for metformin and 2.55–408 ng/mL for glipizide. The relative standard deviation of intra‐day and inter‐day precision was below 10% and the relative error of accuracy was between ?7.0 and 4.6%. The presented HPLC‐MS/MS method was proved to be suitable for the pharmacokinetic study of metformin hydrochloride and glipizide tablets in healthy volunteers after oral administration. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
High‐performance liquid chromatography coupled with time‐of‐flight mass spectrometry (HPLC‐TOF/MS) and high‐performance liquid chromatography–triple quadrupole mass spectrometry (HPLC‐QQQ/MS/MS) were utilized to clarify the chemical constituents of Mahuang‐Fuzi‐Xixin Decoction. There are 52 compounds, including alkaloids, amino acids and organic acids were identified or tentatively characterized by their characteristic high resolution mass data by HPLC‐QQQ/MS/MS. In the subsequent quantitative analysis, 10 constituents, including methyl ephedrine, aconine, songrine, fuziline, neoline, talatisamine, chasmanine, benzoylmesaconine, benzoylaconine and benzoylhypaconine were simultaneously determined by HPLC‐QQQ/MS/MS with multiple reaction monitoring mode. Satisfactory linearity was achieved with wide linear range and fine determination coefficient (r > 0.9992). The relative standard deviations (RSD) of inter‐ and intra‐day precisions were <3%. This method was also validated by repeatability, stability and recovery with RSD <3% respectively. A highly sensitive and efficient method was established for chemical constituents studying, including identification and quantification of Mahuang‐Fuzi‐Xixin decoction.  相似文献   

11.
In the present study a simple, fast, sensitive and robust method to quantify mirtazapine in human plasma using quetiapine as the internal standard (IS) is described. The analyte and the IS were extracted from human plasma by a simple protein precipitation with methanol and were analyzed by high‐performance liquid chromatography coupled to an electrospray tandem triple quadrupole mass spectrometer (HPLC‐ESI‐MS/MS). Chromatography was performed isocratically on a C18, 5 µm analytical column and the run time was 1.8 min. The lower limit of quantitation was 0.5 ng/mL and a linear calibration curve over the range 0.5–150 ng/mL was obtained, showing acceptable accuracy and precision. This analytical method was applied in a relative bioavailability study in order to compare a test mirtazapine 30 mg single‐dose formulation vs a reference formulation in 31 volunteers of both sexes. The study was conducted in an open randomized two‐period crossover design and with a 14 day washout period. Since the 90% confidence interval for Cmax, AUClast and AUC0–inf were within the 80–125% interval proposed by the Food and Drug Administration and ANVISA (Brazilian Health Surveillance Agency), it was concluded that mirtazapine 30 mg/dose is bioequivalent to the reference formulation, according to both the rate and extent of absorption. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
A simple, rapid and reliable liquid chromatography–electrospray ionization tandem mass spectrometry method was established and validated for the determination of methotrexate in human plasma. After a straightforward protein precipitation by acetonitrile–water (70:30, v/v), methotrexate (MTX) and p‐aminoacetophenone (used as internal standard, IS) were separated on a Column C18 column (50 × 2.1 mm, 3 µm; Column Technology, Fremont, CA, USA) using a gradient elution with mobile phase of acetonitrile and 0.03% acetic acid aqueous solution at a flow rate of 0.5 mL/min. The total chromatographic runtime was 5 min for each injection. Quantification detection was performed in a triple‐quadruple tandem mass spectrometer under positive mode monitoring the following mass transitions: m/z 455.3 → 308.3 for MTX and m/z 136.1 → 94.4 for IS. The calibration curve was linear over the range of 0.05–25.0 µmol/L with a lower limit of quantification of 0.05 µmol/L. The intra‐ and interday precisions were <5.2%, the accuracy varied from ?4.1 to 4.5%. The recovery was >94%. The LC‐MS/MS method showed an excellent agreement with the existing HPLC‐UV method using Passing–Bablok regression and Bland–Altman difference plot analysis. The validated LC‐MS/MS can be successfully applied to the routine therapeutic drug monitoring of MTX in clinical laboratories. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
To investigate the consistency and bioequivalence of tacrolimus ointment reference and trial formulation, the tacrolimus concentrations in blood and skin were determined by HPLC‐ESI‐MS/MS following topical application of two kinds of ointment in porcine skin in a parallel, cross‐over trial. The plasma protein of blood was precipitated by acetonitrile and the tacrolimus in skin was extracted by acetonitrile before HPLC‐ESI‐MS/MS analysis. The internal calibration method (diazepam was the internal standard) was used for quantification analysis (R2 > 0.9999), with linear range from 0.05 to 5 ng/mL for blood samples and from 1 to 200 ng/mL for skin samples. The limits of detection for the porcine blood and skin were 0.005 and 0.5 ng/mL, respectively. The average recoveries for the porcine blood and skin spiked at three levels were 97.56–109.53 and 96.48–103.57%, respectively. The precision expressed in RSDs was from 3.43 to 10.83% for porcine blood and from 3.10 to 8.69% for porcine skin. For the same pig, the tacrolimus concentrations and variation with time of the two kinds of ointment in porcine skin were similar, although variation occurred with different individuals. These results showed that the release and penetration of tacrolimus from the reference and trial formulation are similar. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Oxaliplatin, [(1R,2R)‐cyclohexane‐1,2‐diamine](ethanedioato‐O,O')platinum(II) shows a great efficiency against colorectal cancer. Although the mode of action of oxaliplatin is not yet understood, it is commonly accepted that binding of oxaliplatin to DNA prevents DNA synthesis and alters protein to DNA binding. In order to elucidate the modified DNA–protein interaction and thus to understand the mechanisms leading to cellular misinterpretation of DNA information and apoptosis, we have identified the preferential binding sites and the dynamics of the oxaliplatin‐DNA intrastrand and interstrand adducts at the oligomer level using high‐performance liquid chromatography/electrospray ionization‐tandem mass spectrometry (HPLC/ESI‐MS/MS) and HPLC/inductively coupled plasma‐MS for quantitative studies. We used a combination of benzonase, alkaline phosphatase and Nuclease S1 for digestion. This digestion procedure allows the study of platinated oligomeric nucleotides and more complex interstrand adducts. The digestion products were mostly chromatographically separated and characterized using HPLC/ESI‐ion trap MS/MS experiments. We could show that the adducts to guanine and adenine are quite dynamic; that is, the ratios are changing for several days. In addition, the resulting adducts provide evidence for the action of the digesting enzymes and indicate that the adduct spectrum at the oligomeric level is different to that at the commonly studies dinucleotide level. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
In order to accurately investigate the preclinical pharmacokinetics of (R)‐(+)‐rabeprazole sodium injection, a reliable high‐performance liquid chromatography (HPLC) method was developed using a Chiral‐AGP column to prove that there is no chiral bioconversion of (R)‐(+)‐rabeprazole to (S)‐(?)‐rabeprazole in beagle dogs after single intravenous administration of (R)‐(+)‐rabeprazole sodium injection. An HPLC–tandem mass spectrometry (HPLC‐MS/MS) method for analysis of (R)‐(+)‐rabeprazole was developed and validated, and used to acquire the pharmacokinetic parameters in beagle dogs. (R)‐(+)‐Rabeprazole and internal standard omeprazole were extracted from plasma samples by protein precipitation and separated on a C18 column using methanol–5 mm ammonium acetate as mobile phase. Detection was performed using a turbo‐spray ionization source and mass spectrometric positive multi‐reaction monitoring mode. The linear relationship was achieved in the range from 2.5 to 5000 ng/mL. The method also afforded satisfactory results in terms of sensitivity, specificity, precision, accuracy and recovery as well as the stability of the analyte under various conditions, and was successfully applied to a preclinical pharmacokinetic study in beagle dogs after single intravenous administrations of (R)‐(+)‐rabeprazole sodium injection at 0.33, 2 and 6 mg/kg. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
A rapid, sensitive HPLC‐MS/MS method was established and validated to assay the concentration and pharmacokinetic profile of MT502, a promising hypnotic drug. The plasma sample was treated by a liquid–liquid extraction and separated on a kromasil C18 column at an isocratic flow rate of 0.3 mL/min using methanol and 0.1% formic acid in water (75:25, v/v) as mobile phase. The mass spectrometric detection was carried out using a triple‐quadrupole system via positive electrospray ionization. Multiple reaction monitoring was used for quantitation of m/z transitions from 261 to 188 for MT502 and from 247 to 188 for MT501 (internal standard). Good linearity was achieved over the concentration range of 1–1000 ng/mL and 10–5000 ng/mL with lower limit of quantification of 0.30 and 0.80 ng/mL. The intra‐ and inter‐day precisions, accuracy, recovery and stability were satisfactory for the concentration test. The above method can be used for a pharmacokinetic study at doses of 1, 5 and 20 mg/kg. Results indicated that MT502 had rapid absorption, rapid elimination and linear pharmacokinetic properties within the range of the tested intragastric dose. This developed HPLC‐MS/MS method was successfully applied to a pharmacokinetic study of MT502 for the first time and was demonstrated to be simple and sensitive. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Dipyridamole is a classic platelet inhibitor which has been a key medicine in clinical therapy of thrombosis and cerebrovascular disease. A rapid, selective and convenient method using high‐performance liquid chromatography–tandem mass spectrometry (HPLC‐MS/MS) was developed for determination of dipyridamole in human plasma. After protein precipitation of 200 μL plasma with methanol, dipyridamole and diazepam (internal standard) were chromatographed on an Ultimate? XB‐C18 (50 × 2.1 mm i.d, 3 μ) column with the mobile phase consisting of methanol–ammonium acetate (5 mM ; 80 : 20, v/v) at a flow rate of 0.25 mL/min. The detection was performed on a triple quadrupole tandem mass spectrometer by multiple reaction monitoring mode via positive eletrospray ionization source (ESI+). The retention times of dipyridamole and diazepam were 1.4 and 1.2 min, respectively. The method was validated over a concentration range of 0.0180–4.50 μg/mL (r2 ≥ 0.99) with a lower limit of quantitation (LLOQ) of 0.0180 μg/mL for dipyridamole. The intra‐ and inter‐day precisions (RSD) of the assay at all three QC levels were 1.6–12.7% with an accuracy (RE) of ?4.3–1.9%, which meets the requirements of the FDA guidance. The HPLC‐MS/MS method herein described was proved to be suitable for pharmacokinetic study of sustained‐release dipyridamole tablet in volunteers after oral administration. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
A robust and sensitive high‐performance liquid chromatographic–tandem mass spectrometric (HPLC‐MS/MS) assay for the high‐throughput quantification of the antihypertensive drug azelnidipine in human plasma was developed and validated following bioanalytical validation guidelines. Azelnidipine and internal standard (IS), telmisartan, were extracted from human plasma by precipitation protein and separated on a C18 column using acetonitrile–methanol–ammonium formate with 0.1% formic acid as mobile phase. Detection was performed on a turbo‐spray ionization source (ESI) and mass spectrometric positive multiple reaction monitoring mode (+MRM) using the respective transitions m/z 583.3 → 167.2 for azelnidipine and m/z 515.3 → 497.2 for IS. The method has a wide analytical measuring range from 0.0125 to 25 ng/mL. For the lowest limit of quantitation, low, medium and high quality controls, intra‐ and interassay precisions (relative standard deviation) were 3.30–7.01% and 1.78–8.09%, respectively. The drug was sufficiently stable under all relevant analytical conditions. The main metabolite of azelnidipine, M‐1 (aromatized form), was monitored semiquantitatively using the typical transition m/z 581.3 → 167.2. Finally, the method was successfully applied to a clinical pharmacokinetic study in human after a single oral administration of azelnidipine 8 mg. The assay meets criteria for the analysis of samples from large research trials. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
Prednisolone (PLN) and prednisone (PN) are widely used glucocorticoids. Drug monitoring of PLN and PN is not routinely done owing to the need for multiple blood sampling and challenging measurement of unbound PLN and PN in blood. Here we present a robust method for quantification of cortisol, PLN and PN in serum, ultrafiltrate and saliva by on‐line solid‐phase extraction LC‐MS/MS. The method is linear for the three analytes over the range of 6–1400 nmol/L for serum and 2–450 nmol/L for ultrafiltrate and saliva. Within‐run precision of all three analytes was <10% and total precision was <15%. This method was applied to create time–concentration profiles of cortisol, PLN and PN after an oral dose of prednisolone in a healthy volunteer. Salivary levels of PLN correlated well with ultrafiltrate levels (p < 0.01), while this correlation was only marginal for PN (p = 0.052). The PN/PLN ratio was significantly higher in saliva than in ultrafiltrate and serum (p < 0.01). Addition sums of both metabolites in saliva showed excellent correlation with those of ultrafiltrate (p < 0.01). These findings have not been presented before and may have important implications for future studies concerning drug monitoring of PLN and PN in saliva. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
The purpose of this study was to validate a reversed‐phase high‐performance liquid chromatographic (HPLC), tandem mass spectrometry (MS/MS) assay for the determination of telaprevir and its R‐diastereomer (VRT‐127394) in acidified and nonacidified human plasma. The chromatographic baseline separation of telaprevir and telaprevir‐R was performed on a Waters XBridgeTM BEH Shield C18, 2.1 × 75 mm column with a 2.5 µm particle size, under isocratic conditions consisting of a mobile phase of 50:45:5 water–acetonitrile–isopropanol with 1% ammonia at 0.2 mL/min. This method utilized a stable isotope internal standard with 11 deuterium atoms on the structure of the telaprevir molecule (telaprevir‐d11). An internal standard for the telaprevir‐R (telaprevir‐R‐d11) was also prepared by incubating telaprevir‐d11 in basic solution, which facilitated isomer inter‐conversion. The detection and quantitation of telaprevir, telaprevir‐R, telaprevir‐IS and telaprevir‐R‐IS was achieved by positive ion electrospray (ESI+) MS/MS detection. The assay quantifiable limit was 5.0 ng/mL when 0.100 mL of acidified human plasma was extracted. Accuracy and precision were validated over the calibration range of 5.0–5000 ng/mL. It was demonstrated using patient samples that, contrary to previous recommendations, quantitation of telaprevir does not require acidified plasma. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号