首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let Ω be a bounded domain in the n-dimensional Euclidean space. In the cylindrical domain QT=Ω x [0, T] we consider a hyperbolic-parabolic equation of the form (1) $$Lu = k(x,t)u_{tt} + \sum\nolimits_{i = 1}^n {a_i u_{tx_i } - } \sum\nolimits_{i,j = 1}^n {\tfrac{\partial }{{\partial x_i }}} (a_{ij} (x,t)u_{x_j } ) + \sum\nolimits_{i = 1}^n {t_i u_{x_i } + au_t + cu = f(x,t),} $$ where \(k(x,t) \geqslant 0,a_{ij} = a_{ji} ,\nu |\xi |^2 \leqslant a_{ij} \xi _i \xi _j \leqslant u|\xi |^2 ,\forall \xi \in R^n ,\nu > 0\) . The classical and the “modified” mixed boundary-value problems for Eq. (1) are studied. Under certain conditions on the coefficients of the equation it is proved that these problems have unique solution in the Sobolev spaces W 2 1 (QT) and W 2 2 (QT).  相似文献   

2.
In this paper, we prove that the maximal operatorsatisfiesis homogeneous of degree 0, has vanishing moment up to order M and satisfies Lq-Dini condition for some  相似文献   

3.
For the spectrum of the operator $$u = \sum\nolimits_{j = 1}^n {( - 1)^{m_j } D_j^{2m_j } u + q(x)u,} $$ to be discrete, where the mj are arbitrary positive integers such that \(\sum\nolimits_{j = 1}^n {\tfrac{1}{{2m_j }}< 1} \) , and q(x) ≥ 1, it is necessary and sufficient that \(\int\limits_K {q (x) dx \to \infty } \) , when the cube K tends to infinity while preserving its dimensions.  相似文献   

4.
We consider the randomly weighted sums $ \sum\nolimits_{k = 1}^n {{\theta_k}{X_k},n \geqslant 1} $ , where $ \left\{ {{X_k},1 \leqslant k \leqslant n} \right\} $ are n real-valued random variables with subexponential distributions, and $ \left\{ {{\theta_k},1 \leqslant k \leqslant n} \right\} $ are other n random variables independent of $ \left\{ {{X_k},1 \leqslant k \leqslant n} \right\} $ and satisfying $ a \leqslant \theta \leqslant b $ for some $ 0 < a \leqslant b < \infty $ and all $ 1 \leqslant k \leqslant n $ . For $ \left\{ {{X_k},1 \leqslant k \leqslant n} \right\} $ satisfying some dependent structures, we prove that $$ {\text{P}}\left( {\mathop {{\max }}\limits_{1 \leqslant m \leqslant n} \sum\limits_{k = 1}^m {{\theta_k}{X_k} > x} } \right)\sim {\text{P}}\left( {\sum\limits_{k = 1}^m {{\theta_k}{X_k} > x} } \right)\sim {\text{P}}\left( {\mathop {{\max }}\limits_{1 \leqslant k \leqslant n} {\theta_k}{X_k} > x} \right)\sim \sum\limits_{k = 1}^m {{\text{P}}\left( {{\theta_k}{X_k} > x} \right)} $$ as x??????.  相似文献   

5.
We study k th order systems of two rational difference equations
$ x_n = \frac{{\alpha + \sum\nolimits_{i = 1}^k {\beta _i x_{n - 1} + } \sum\nolimits_{i = 1}^k {\gamma _i y_{n - 1} } }} {{A + \sum\nolimits_{j = 1}^k {B_j x_{n - j} + } \sum\nolimits_{j = 1}^k {C_j y_{n - j} } }}, y_n = \frac{{p + \sum\nolimits_{i = 1}^k {\delta _i x_{n - i} + } \sum\nolimits_{i = 1}^k {\varepsilon _i y_{n - i} } }} {{q + \sum\nolimits_{j = 1}^k {D_j x_{n - j} + } \sum\nolimits_{j = 1}^k {E_j y_{n - j} } }} n \in \mathbb{N} $ x_n = \frac{{\alpha + \sum\nolimits_{i = 1}^k {\beta _i x_{n - 1} + } \sum\nolimits_{i = 1}^k {\gamma _i y_{n - 1} } }} {{A + \sum\nolimits_{j = 1}^k {B_j x_{n - j} + } \sum\nolimits_{j = 1}^k {C_j y_{n - j} } }}, y_n = \frac{{p + \sum\nolimits_{i = 1}^k {\delta _i x_{n - i} + } \sum\nolimits_{i = 1}^k {\varepsilon _i y_{n - i} } }} {{q + \sum\nolimits_{j = 1}^k {D_j x_{n - j} + } \sum\nolimits_{j = 1}^k {E_j y_{n - j} } }} n \in \mathbb{N}   相似文献   

6.
One of the principal topics of this paper concerns the realization of self-adjoint operators L Θ,Ω in L 2(Ω; d n x) m , m, n ∈ ?, associated with divergence form elliptic partial differential expressions L with (nonlocal) Robin-type boundary conditions in bounded Lipschitz domains Ω ? ? n . In particular, we develop the theory in the vector-valued case and hence focus on matrix-valued differential expressions L which act as $$Lu = - \left( {\sum\limits_{j,k = 1}^n {\partial _j } \left( {\sum\limits_{\beta = 1}^m {a_{j,k}^{\alpha ,\beta } \partial _k u_\beta } } \right)} \right)_{1 \leqslant \alpha \leqslant m} , u = \left( {u_1 , \ldots ,u_m } \right).$$ The (nonlocal) Robin-type boundary conditions are then of the form $$v \cdot ADu + \Theta [u|_{\partial \Omega } ] = 0{\text{ on }}\partial \Omega ,$$ where Θ represents an appropriate operator acting on Sobolev spaces associated with the boundary ?Ω of Ω, ν denotes the outward pointing normal unit vector on ?Ω, and $Du: = \left( {\partial _j u_\alpha } \right)_{_{1 \leqslant j \leqslant n}^{1 \leqslant \alpha \leqslant m} } .$ Assuming Θ ≥ 0 in the scalar case m = 1, we prove Gaussian heat kernel bounds for L Θ,Ω, by employing positivity preserving arguments for the associated semigroups and reducing the problem to the corresponding Gaussian heat kernel bounds for the case of Neumann boundary conditions on ?Ω. We also discuss additional zero-order potential coefficients V and hence operators corresponding to the form sum L Θ,Ω + V.  相似文献   

7.
For the class Cε={f∈C: En, n≤Z+} where \(\left\{ {\varepsilon _n } \right\}_{n \in Z_ + } \) is a sequence of numbers tending monotonically to zero, we establish the following precise (in the sense of order) bounds for the error of approximation by de la Vallée-Poussin sums: (1) $$c_1 \sum\nolimits_{j = n}^{2\left( {n + l} \right)} {\frac{{\varepsilon _j }}{{l + j - n + 1}}} \leqslant \mathop {\sup }\limits_{f \in C_\varepsilon } \left\| {f - V_{n, l} \left( f \right)} \right\|_C \leqslant c_2 \sum\nolimits_{j = n}^{2\left( {n + l} \right)} {\frac{{\varepsilon _j }}{{l + j - n + 1}}} \left( {n \in N} \right)$$ , where c1 and c2 are constants which do not depend on n orl. This solves the problem posed by S. B. Stechkin at the Conference on Approximation Theory (Bonn, 1976) and permits a unified treatment of many earlier results obtained only for special classes Cε of (differentiable) functions. The result (1) substantially refines the estimate (see [1]) (2) $$\left\| {V_{n, l} \left( f \right) - f} \right\|_C = O\left( {\log {n \mathord{\left/ {\vphantom {n {\left( {l + 1} \right) + 1}}} \right. \kern-\nulldelimiterspace} {\left( {l + 1} \right) + 1}}} \right) E_n \left[ f \right] \left( {n \to \infty } \right)$$ and includes as particular cases the estimates of approximations by Fejér sums (see [2]) and by Fourier sums (see [3]).  相似文献   

8.
We study k th order systems of two rational difference equations
$ x_n = \frac{{\alpha + \sum\nolimits_{i = 1}^k {\beta _i x_{n - i} + } \sum\nolimits_{i = 1}^k {\gamma _i y_{n - i} } }} {{A + \sum\nolimits_{j = 1}^k {B_j x_{n - j} + } \sum\nolimits_{j = 1}^k {C_j y_{n - j} } }},n \in \mathbb{N}, $ x_n = \frac{{\alpha + \sum\nolimits_{i = 1}^k {\beta _i x_{n - i} + } \sum\nolimits_{i = 1}^k {\gamma _i y_{n - i} } }} {{A + \sum\nolimits_{j = 1}^k {B_j x_{n - j} + } \sum\nolimits_{j = 1}^k {C_j y_{n - j} } }},n \in \mathbb{N},   相似文献   

9.
The algebraic independence of certain transcendental continued fractions   总被引:2,自引:0,他引:2  
In the present note the algebraic independence of certain continued fractions is proved. Especially, we prove that the Böhmer-Mahler's series \(\sum\limits_{K = 1}^\infty {\left[ {\omega _v k} \right]} {\text{ }}g_\mu ^{ - k} \left( {1 \leqslant \mu \leqslant s,1 \leqslant v \leqslant t} \right)\) are algebraically independent, where \(\mathop \omega \nolimits_1 {\text{ , }}...{\text{ , }}\mathop \omega \nolimits_{\text{t}} \) , ..., \(\mathop g\nolimits_1 {\text{ , }}...{\text{ , }}\mathop g\nolimits_s \) are some irrational numbers andg 1, ...,g s are distinct positive integers.  相似文献   

10.
For continuous random variables, we study a problem similar to that considered earlier by one of the authors for discrete random variables. Let numbers $$N > 0, E > 0, 0 \leqslant \lambda _1 \leqslant \lambda _2 \leqslant \cdots \leqslant \lambda _s $$ be given. Consider a random vector x = (x 1, …, x s), uniformly distributed on the set $$x_j \geqslant 0, j = 1, \ldots ,s; \sum\limits_{j = 1}^s {x_j = N} , \sum\limits_{j = 1}^s {\lambda _j x_j \leqslant E} .$$ We study the weak limit of x as s → ∞.  相似文献   

11.
Let $\gamma ,\delta \in \mathbb{R}^n $ with $\gamma _j ,\delta _j \in \{ 0,1\} $ . A comparison pair for a system of equations fi(u1,…,un)=0 (i=1,…,n) is a pair of vectors $v,w \in \mathbb{R}^n ,v \leqslant w$ , such that $$\begin{array}{*{20}c} {\gamma _i f_i (u_1 , \ldots ,u_{i - 1} ,v_i ,u_i + 1, \ldots ,u_n ) \leqslant 0,} \\ {\delta _i f_i (u_1 , \ldots ,u_{i - 1} ,w_i ,u_i + 1, \ldots ,u_n ) \geqslant 0} \\ \end{array} $$ for $\gamma _j u_j \geqslant v_j ,\delta _j u_j \leqslant w_j (j = 1, \ldots ,n)$ . The presence of comparison pairs enables one to essentially weaken the assumptions of the existence theorem. Bibliography: 1 title.  相似文献   

12.
Leta(n) denote the number of non-isomorphic Abelian groups withn elements, and Δ(x) (resp. Δ x ) appropriate error terms in the asymptotic formulas for the counting function \(\sum\nolimits_{n \leqslant x} {a(n)} (resp. \sum\nolimits_{m n \leqslant x} {a(m)} a(n))\) . Sharp bounds for $$\int\limits_1^X {\Delta (x) dx} , \int\limits_1^X {\Delta _{ 1} (x) dx} ,\int\limits_1^X {\Delta _1^2 (x) dx} $$ are given by using results on power moments of the Riemann zeta-function.  相似文献   

13.
Let 0≤g be a dyadic Hölder continuous function with period 1 and g(0)=1, and let $G(x) = \prod\nolimits_{n = 0}^\infty {g(x/{\text{2}}^n )} $ . In this article we investigate the asymptotic behavior of $\smallint _0^{\rm T} \left| {G(x)} \right|^q dx$ and $\frac{1}{n}\sum\nolimits_{k = 0}^n {\log g(2^k x)} $ using the dynamical system techniques: the pressure function and the variational principle. An algorithm to calculate the pressure is presented. The results are applied to study the regulatiry of wavelets and Bernoulli convolutions.  相似文献   

14.
The modified Bernstein-Durrmeyer operators discussed in this paper are given byM_nf≡M_n(f,x)=(n+2)P_(n,k)∫_0~1p_n+1.k(t)f(t)dt,whereWe will show,for 0<α<1 and 1≤p≤∞  相似文献   

15.
We give a simple proof of a mean value theorem of I. M. Vinogradov in the following form. Suppose P, n, k, τ are integers, P≥1, n≥2, k≥n (τ+1), τ≥0. Put $$J_{k,n} (P) = \int_0^1 \cdots \int_0^1 {\left| {\sum\nolimits_{x = 1}^P {e^{2\pi i(a_1 x + \cdots + a_n x^n )} } } \right|^{2k} da_1 \ldots da_n .} $$ Then $$J_{k,n} \leqslant n!k^{2n\tau } n^{\sigma n^2 u} \cdot 2^{2n^2 \tau } P^{2k - \Delta } ,$$ where $$\begin{gathered} u = u_\tau = min(n + 1,\tau ), \hfill \\ \Delta = \Delta _\tau = n(n + 1)/2 - (1 - 1/n)^{\tau + 1} n^2 /2. \hfill \\ \end{gathered} $$   相似文献   

16.
Let Zj be the Euclidean space of vectors \((z_{j,1,...,} z_{j_{j \cdot n_j + 1} } ), Z = \mathop \oplus \limits_{j = 1}^P Z_j\) . The function u: Z → ?+, u ?0, is said to be logarithmically p-subharmonic if log u(z) is upper semicontinuous with respect to the totality of the variables and subharmonic or identically equal to ?∞ with respect to each zj when the remaining ones are fixed. For such functions, with the growth estimate $$log u(z) \leqslant \delta \mathop \Pi \limits_{j = 1}^P (1 + |z_{j,n_j + 1} |) + N(\mathop {\sum\limits_{\mathop {1 \leqslant j \leqslant p}\limits_{} } {z_{j,k}^2 } }\limits_{1 \leqslant k \leqslant n_j } )^{1/2} + C; \delta ,N \geqslant 0, C \in \mathbb{R}$$ one proves theorems on equivalence of) (Lq)-norms of their restrictions to \(X = \mathop \oplus \limits_{j = 1}^P (Z_{j,1} ,...,z_{j,n_j } )\) and to a relatively dense subset of it, generalizing the known Cartwright and Plancherel-Pólya results.  相似文献   

17.
Let and be polynomials orthogonal on the unit circle with respect to the measures dσ and dμ, respectively. In this paper we consider the question how the orthogonality measures dσ and dμ are related to each other if the orthogonal polynomials are connected by a relation of the form , for , where . It turns out that the two measures are related by if , where and are known trigonometric polynomials of fixed degree and where the 's are the zeros of on . If the 's and 's are uniformly bounded then (under some additional conditions) much more can be said. Indeed, in this case the measures dσ and dμ have to be of the form and , respectively, where are nonnegative trigonometric polynomials. Finally, the question is considered to which weight functions polynomials of the form where denotes the reciprocal polynomial of , can be orthogonal. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
19.
The Schur-Szegö composition of two polynomials \(f\left( z \right) = \sum\nolimits_{j = 0}^n {{A_j}{z^j}} \) and \(g\left( z \right) = \sum\nolimits_{j = 0}^n {{B_j}{z^j}} \), both of degree n, is defined by \(f * g\left( z \right) = \sum\nolimits_{j = 0}^n {{A_j}{B_j}{{\left( {\begin{array}{*{20}{c}}n \\ j \end{array}} \right)}^{ - 1}}{z^j}} \). In this paper, we estimate the minimum and the maximum of the modulus of f * g(z) on z = 1 and thereby obtain results analogues to Bernstein type inequalities for polynomials.  相似文献   

20.
The following uniformly elliptic equation is considered: $$\sum {\tfrac{\partial }{{\partial x_i }}a_{ij} (x)\tfrac{{\partial u}}{{\partial x_j }} = f(x,u,\nabla u)} , x \in \Omega \subset R^n ,$$ with measurable coefficients. The function f satisfies the condition $$f(x, u, \nabla u) u \geqslant C|u|^{\beta _1 + 1} |\nabla u|^{\beta _1 } , \beta _1 > 0, 0 \leqslant \beta _2 \leqslant 2, \beta _1 + \beta _2 > 1$$ . It is proved that if u(x) is a generalized (in the sense of integral identity) solution in the domain ΩK, where the compactum K has Hausdorff dimension α, and if \(\frac{{2\beta _1 + \beta _2 }}{{\beta _1 + \beta _2 - 1}}< n - \alpha \) , u(x) will be a generalized solution in the domain ω. Moreover, the sufficient removability conditions for the singular set are, in some sense, close to the necessary conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号