首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this work, the aromaticity of pyracylene (2) was investigated from an energetic point of view. The standard enthalpy of hydrogenation of acenaphthylene (1) to acenaphthene (3) at 298.15 K was determined to be minus sign(114.5 +/- 4.2) kJ x mol(-1) in toluene solution and minus sign(107.9 +/- 4.2) kJ x mol(-1) in the gas phase, by combining results of combustion and reaction-solution calorimetry. A direct calorimetric measurement of the standard enthalpy of hydrogenation of pyracylene (2) to pyracene (4) in toluene at 298.15 K gave -(249.9 plus minus 4.6) kJ x mol(-1). The corresponding enthalpy of hydrogenation in the gas phase, computed from the Delta(f)H(o)m(cr) and DeltaH(o)m(sub) values obtained in this work for 2 and 4, was -(236.0 +/- 7.0) kJ x mol(-1). Molecular mechanics calculations (MM3) led to Delta(hyd)H(o)m(1,g) = -110.9 kJ x mol(-1) and Delta(hyd)H(o)m(2,g) = -249.3 kJ x mol(-1) at 298.15 K. Density functional theory calculations [B3LYP/6-311+G(3d,2p)//B3LYP/6-31G(d)] provided Delta(hyd)H(o)m(2,g) = -(244.6 +/- 8.9) kJ x mol(-1) at 298.15 K. The results are put in perspective with discussions concerning the "aromaticity" of pyracylene. It is concluded that, on energetic grounds, pyracylene is a borderline case in terms of aromaticity/antiaromaticity character.  相似文献   

2.
A rotating-bomb combustion calorimeter specifically designed for the study of sulfur-containing compounds [J. Chem. Thermodyn. 1999, 31, 635] has been used for the determination of the enthalpy of formation of thiane sulfone, 4, Delta(f)H(o) m(g) = -394.8 +/- 1.5 kJ x mol(-1). This value stands in stark contrast with the enthalpy of formation reported for thiane itself, Delta(f)H(o) m(g) = -63.5 +/- 1.0 kJ x mol(-1), and gives evidence of the increased electronegativity of the sulfur atom in the sulfonyl group, which leads to significantly stronger C-SO2 bonds. Given the known enthalpy of formation of atomic oxygen in the gas phase, Delta(f)H(o) m(O,g) = +249.18 kJ x mol(-1), and the reported bond dissociation energy for the S=O bond in alkyl sulfones, BDE(S=O) = +470.0 kJ x mol(-1), it was possible to estimate the enthalpy of formation of thiane sulfoxide, 5, a hygroscopic compound not easy to use in experimental calorimetric measurements, Delta(f)H(o) m(5) = -174.0 kJ x mol(-1). The experimental enthalpy of formation of both 4 and 5 were closely reproduced by theoretical calculations at the G2(MP2)+ level, Delta(f)H(o) m(4) = -395.0 kJ x mol(-1) and Delta(f)H(o) m(5) = -178.0 kJ x mol(-1). Finally, calculated G2(MP2)+ values for the bond dissociation energy of the S=O bond in cyclic sulfoxide 5 and sulfone 4 are +363.7 and +466.2 kJ x mol(-1), respectively.  相似文献   

3.
The values of the molar standard enthalpies of formation, Delta(f)H(o)(m)(C(76), cr) = (2705.6 +/- 37.7) kJ x mol(-1), Delta(f)H(o)(m)(C(78), cr) = (2766.5 +/- 36.7) kJ x mol(-1), and Delta(f)H(o)(m)(C(84), cr) = (2826.6 +/- 42.6) kJ x mol(-1), were determined from the energies of combustion, measured by microcombustion calorimetry on a high-purity sample of the D(2) isomer of fullerene C(76), as well as on a mixture of the two most abundant constitutional isomers of C(78) (C(2nu)-C(78) and D(3)-C(78)) and C(84) (D(2)-C(84), and D(2d)-C(84). These values, combined with the published data on the enthalpies of sublimation of each cluster, lead to the gas-phase enthalpies of formation, Delta(f)H(o)(m)(C(76), g) = (2911.6 +/- 37.9) kJ x mol(-1); Delta(f)H(o)(m)(C(78), g) = (2979.3 +/- 37.2) kJ x mol(-1), and Delta(f)H(o)(m)(C(84), (g)) = (3051.6 +/- 43.0) kJ x mol(-1), results that were found to compare well with those reported from density functional theory calculations. Values of enthalpies of atomization, strain energies, and the average C-C bond energy were also derived for each fullerene. A decreasing trend in the gas-phase enthalpy of formation and strain energy per carbon atom as the size of the cluster increases is found. This is the first experimental evidence that these fullerenes become more stable as they become larger. The derived experimental average C-C bond energy E(C-C) = 461.04 kJ x mol(-1) for fullerenes is close to the average bond energy E(C-C) = 462.8 kJ x mol(-1) for polycyclic aromatic hydrocarbons (PAHs).  相似文献   

4.
The energetics of the phenolic O-H bond in the three hydroxybenzoic acid isomers and of the intramolecular hydrogen O-H- - -O-C bond in 2-hydroxybenzoic acid, 2-OHBA, were investigated by using a combination of experimental and theoretical methods. The standard molar enthalpies of formation of monoclinic 3- and 4-hydroxybenzoic acids, at 298.15 K, were determined as Delta(f)(3-OHBA, cr) = -593.9 +/- 2.0 kJ x mol(-1) and Delta(f)(4-OHBA, cr) = -597.2 +/- 1.4 kJ x mol(-1), by combustion calorimetry. Calvet drop-sublimation calorimetric measurements on monoclinic samples of 2-, 3-, and 4-OHBA, led to the following enthalpy of sublimation values at 298.15 K: Delta(sub)(2-OHBA) = 94.4 +/- 0.4 kJ x mol(-1), Delta(sub)(3-OHBA) = 118.3 +/- 1.1 kJ x mol(-1), and Delta(sub)(4-OHBA) = 117.0 +/- 0.5 kJ x mol(-1). From the obtained Delta(f)(cr) and Delta(sub) values and the previously reported enthalpy of formation of monoclinic 2-OHBA (-591.7 +/- 1.3 kJ x mol(-1)), it was possible to derive Delta(f)(2-OHBA, g) = -497.3 +/- 1.4 kJ x mol(-1), Delta(f)(3-OHBA, g) = -475.6 +/- 2.3 kJ x mol(-1), and Delta(f)(4-OHBA, cr) = -480.2 +/- 1.5 kJ x mol(-1). These values, together with the enthalpies of isodesmic and isogyric gas-phase reactions predicted by density functional theory (B3PW91/aug-cc-pVDZ, MPW1PW91/aug-cc-pVDZ, and MPW1PW91/aug-cc-pVTZ) and the CBS-QMPW1 methods, were used to derive the enthalpies of formation of the gaseous 2-, 3-, and 4-carboxyphenoxyl radicals as (2-HOOCC(6)H(4)O(*), g) = -322.5 +/- 3.0 kJ.mol(-1) Delta(f)(3-HOOCC(6)H(4)O(*), g) = -310.0 +/- 3.0 kJ x mol(-1), and Delta(f)(4-HOOCC(6)H(4)O(*), g) = -318.2 +/- 3.0 kJ x mol(-1). The O-H bond dissociation enthalpies in 2-OHBA, 3-OHBA, and 4-OHBA were 392.8 +/- 3.3, 383.6 +/- 3.8, and 380.0 +/- 3.4 kJ x mol(-1), respectively. Finally, by using the ortho-para method, it was found that the H- - -O intramolecular hydrogen bond in the 2-carboxyphenoxyl radical is 25.7 kJ x mol(-1), which is ca. 6-9 kJ x mol(-1) above the one estimated in its parent (2-OHBA), viz. 20.2 kJ x mol(-1) (theoretical) or 17.1 +/- 2.1 kJ x mol(-1) (experimental).  相似文献   

5.
Combustion calorimetry studies were used to determine the standard molar enthalpies of formation of o-, m-, and p-cresols, at 298.15 K, in the condensed state as Delta(f)H(m) degrees (o-CH(3)C(6)H(4)OH,cr) = -204.2 +/- 2.7 kJ.mol(-1), Delta(f)H(m) degrees (m-CH(3)C(6)H(4)OH,l) = -196.6 +/- 2.1 kJ.mol(-1), and Delta(f)H(m) degrees (p-CH(3)C(6)H(4)OH,cr) = -202.2 +/- 3.0 kJ.mol(-1). Calvet drop calorimetric measurements led to the following enthalpy of sublimation and vaporization values at 298.15 K: Delta(sub)H(m) degrees (o-CH(3)C(6)H(4)OH) = 73.74 +/- 0.46 kJ.mol(-1), Delta(vap)H(m) degrees (m-CH(3)C(6)H(4)OH) = 64.96 +/- 0.69 kJ.mol(-1), and Delta(sub)H(m) degrees (p-CH(3)C(6)H(4)OH) = 73.13 +/- 0.56 kJ.mol(-1). From the obtained Delta(f)H(m) degrees (l/cr) and Delta(vap)H(m) degrees /Delta(sub)H(m) degrees values, it was possible to derive Delta(f)H(m) degrees (o-CH(3)C(6)H(4)OH,g) = -130.5 +/- 2.7 kJ.mol(-1), Delta(f)H(m) degrees (m-CH(3)C(6)H(4)OH,g) = -131.6 +/- 2.2 kJ.mol(-1), and Delta(f)H(m) degrees (p-CH(3)C(6)H(4)OH,g) = -129.1 +/- 3.1 kJ.mol(-1). These values, together with the enthalpies of isodesmic and isogyric gas-phase reactions predicted by the B3LYP/cc-pVDZ, B3LYP/cc-pVTZ, B3P86/cc-pVDZ, B3P86/cc-pVTZ, MPW1PW91/cc-pVTZ, CBS-QB3, and CCSD/cc-pVDZ//B3LYP/cc-pVTZ methods, were used to obtain the differences between the enthalpy of formation of the phenoxyl radical and the enthalpies of formation of the three methylphenoxyl radicals: Delta(f)H(m) degrees (C(6)H(5)O*,g) - Delta(f)H(m) degrees (o-CH(3)C(6)H(4)O*,g) = 42.2 +/- 2.8 kJ.mol(-1), Delta(f)H(m) degrees (C(6)H(5)O*,g) - Delta(f)H(m) degrees (m-CH(3)C(6)H(4)O*,g) = 36.1 +/- 2.4 kJ.mol(-1), and Delta(f)H(m) degrees (C(6)H(5)O*,g) - Delta(f)H(m) degrees (p-CH(3)C(6)H(4)O*,g) = 38.6 +/- 3.2 kJ.mol(-1). The corresponding differences in O-H bond dissociation enthalpies were also derived as DH degrees (C(6)H(5)O-H) - DH degrees (o-CH(3)C(6)H(4)O-H) = 8.1 +/- 4.0 kJ.mol(-1), DH degrees (C(6)H(5)O-H) - DH degrees (m-CH(3)C(6)H(4)O-H) = 0.9 +/- 3.4 kJ.mol(-1), and DH degrees (C(6)H(5)O-H) - DH degrees (p-CH(3)C(6)H(4)O-H) = 5.9 +/- 4.5 kJ.mol(-1). Based on the differences in Gibbs energies of formation obtained from the enthalpic data mentioned above and from published or calculated entropy values, it is concluded that the relative stability of the cresols varies according to p-cresol < m-cresol < o-cresol, and that of the radicals follows the trend m-methylphenoxyl < p-methylphenoxyl < o-methylphenoxyl. It is also found that these tendencies are enthalpically controlled.  相似文献   

6.
[reaction: see text] This study is a multinational, multidisciplinary contribution to the thermochemistry of dimethyl1,4-cubanedicarboxylate and the corresponding isomeric, cuneane derivative and provides both structural and thermochemical information regarding the rearrangement of dimethyl 1,4-cubanedicarboxylate to dimethyl 2,6-cuneanedicarboxylate. The enthalpies of formation in the condensed phase at T = 298.15 K of dimethyl 1,4-cubanedicarboxylate (dimethyl pentacyclo[4.2.0.0.(2,5)0.(3,8)0(4,7)]octane-1,4-dicarboxylate) and dimethyl 2,6-cuneanedicarboxylate (dimethyl pentacyclo[3.3.0.0.(2,4)0.(3,7)0(6,8)]octane-2,6-dicarboxylate) have been determined by combustion calorimetry, delta(f) H(o)m (cr)/kJ x mol(-1) = -232.62 +/- 5.84 and -413.02 +/- 5.16, respectively. The enthalpies of sublimation have been evaluated by combining vaporization enthalpies evaluated by correlation-gas chromatography and fusion enthalpies measured by differential scanning calorimetry and adjusted to T = 298.15 K, delta(cr) (g)Hm (298.15 K)/kJ x mol(-1) = 117.2 +/- 3.9 and 106.8 +/- 3.0, respectively. Combination of these two enthalpies resulted in delta(f) H(o)m (g., 298.15 K)/kJ x mol(-1) of -115.4 +/- 7.0 for dimethyl 1,4-cubanedicarboxylate and -306.2 +/- 6.0 for dimethyl 2,6-cuneanedicarboxylate. These measurements, accompanied by quantum chemical calculations, resulted in values of delta(f) Hm (g, 298.15 K) = 613.0 +/- 9.5 kJ x mol(-1) for cubane and 436.4 +/- 8.8 kJ x mol(-1) for cuneane. From these enthalpies of formation, strain enthalpies of 681.0 +/- 9.8 and 504.4 +/- 9.1 kJ x mol(-1) were calculated for cubane and cuneane by means of isodesmic reactions, respectively. Crystals of dimethyl 2,6-cuneanedicarboxylate are disordered; the substitution pattern and structure have been confirmed by determination of the X-ray crystal structure of the corresponding diacid.  相似文献   

7.
The standard molar enthalpies of formation of chloro-, bromo-, and iodoacetic acids in the crystalline state, at 298.15 K, were determined as deltafH(o)m(C2H3O2Cl, cr alpha)=-(509.74+/- 0.49) kJ x mol(-1), deltafH(o)m(C2H3O2Br, cr I)-(466.98 +/- 1.08) kJ x mol(-1), and deltafH(o)m (C2H3O2I, cr)=-(415.44 +/- 1.53) kJ x mol(-1), respectively, by rotating-bomb combustion calorimetry. Vapor pressure versus temperature measurements by the Knudsen effusion method led to deltasubH(o)m(C2H3O2Cl)=(82.19 +/- 0.92) kJ x mol(-1), deltasubH(o)m(C2H3O2Br)=(83.50 +/- 2.95) kJ x mol(-1), and deltasubH(o)m-(C2H3O2I) = (86.47 +/- 1.02) kJ x mol(-1), at 298.15 K. From the obtained deltafH(o)m(cr) and deltasubH(o)m values it was possible to derive deltafH(o)m(C2H3O2Cl, g)=-(427.55 +/- 1.04) kJ x mol(-1), deltafH(o)m (C2H3O2Br, g)=-(383.48 +/- 3.14) kJ x mol(-1), and deltafH(o)m(C2H3O2I, g)=-(328.97 +/- 1.84) kJ x mol(-1). These data, taken with a published value of the enthalpy of formation of acetic acid, and the enthalpy of formation of the carboxymethyl radical, deltafH(o)m(CH2COOH, g)=-(238 +/- 2) kJ x mol(-1), obtained from density functional theory calculations, led to DHo(H-CH2COOH)=(412.8 +/- 3.2) kJ x mol(-1), DHo(Cl-CH2COOH)=(310.9 +/- 2.2) kJ x mol(-1), DHo(Br-CH2COOH)=(257.4 +/- 3.7) kJ x mol(-1), and DHo(I-CH2COOH)=(197.8 +/- 2.7) kJ x mol(-1). A discussion of the C-X bonding energetics in XCH2COOH, CH3X, C2H5X, C2H3X, and C6H5X (X=H, Cl, Br, I) compounds is presented.  相似文献   

8.
The experimental and theoretical thermochemistry of the gaseous neutral and ionic iron oxides and hydroxides FeO, FeOH, FeO(2), OFeOH, and Fe(OH)(2) and of the related cationic water complexes Fe(H(2)O)(+), (H(2)O)FeOH(+), and Fe(H(2)O)(2)(+) is analyzed comprehensively. A combination of data for the neutral species with those of the gaseous ions in conjunction with some additional measurements provides a refined and internally consistent compilation of thermochemical data for the neutral and ionic species. In terms of heats of formation at 0 K, the best estimates for the gaseous, mononuclear FeO(m)H(n)(-/0/+/2+) species with m = 1, 2 and n = 0-4 are Delta(f)H(FeO(-)) = (108 +/- 6) kJ/mol, Delta(f)H(FeO) = (252 +/- 6) kJ/mol, Delta(f)H(FeO(+)) = (1088 +/- 6) kJ/mol, Delta(f)H(FeOH) = (129 +/- 15) kJ/mol, Delta(f)H(FeOH(+)) = (870 +/- 15) kJ/mol, Delta(f)H(FeO(2)(-)) = (-161 +/- 13) kJ/mol, Delta(f)H(FeO(2)) = (67 +/- 12) kJ/mol, Delta(f)H(FeO(2)(+)) = (1062 +/- 25) kJ/mol, Delta(f)H(OFeOH) = (-84 +/- 17) kJ/mol, Delta(f)H(OFeOH(+)) = (852 +/- 23) kJ/mol, Delta(f)H(Fe(OH)(2)(-)) = -431 kJ/mol, Delta(f)H(Fe(OH)(2)) = (-322 +/- 2) kJ/mol, and Delta(f)H(Fe(OH)(2)(+)) = (561 +/- 10) kJ/mol for the iron oxides and hydroxides as well as Delta(f)H(Fe(H(2)O)(+)) = (809 +/- 5) kJ/mol, Delta(f)H((H(2)O)FeOH(+)) = 405 kJ/mol, and Delta(f)H(Fe(H(2)O)(2)(+)) = (406 +/- 6) kJ/mol for the cationic water complexes. In addition, charge-stripping data for several of several-iron-containing cations are re-evaluated due to changes in the calibration scheme which lead to Delta(f)H(FeO(2+)) = (2795 +/- 28) kJ/mol, Delta(f)H(FeOH(2+)) = (2447 +/- 30) kJ/mol, Delta(f)H(Fe(H(2)O)(2+)) = (2129 +/- 29) kJ/mol, Delta(f)H((H(2)O)FeOH(2+)) = 1864 kJ/mol, and Delta(f)H(Fe(H(2)O)(2)(2+)) = (1570 +/- 29) kJ/mol, respectively. The present compilation thus provides an almost complete picture of the redox chemistry of mononuclear iron oxides and hydroxides in the gas phase, which serves as a foundation for further experimental studies and may be used as a benchmark database for theoretical studies.  相似文献   

9.
In atom-based thermochemistry (ABT), state functions are referenced to free atoms, as opposed to the thermochemical convention of referencing to elements in their standard state. The shift of the reference frame reveals previously unrecognized linear relationships between the standard atomization enthalpies Delta(at)H(o)(g) of gas-phase diatomic and triatomic molecules and Delta(at)H(o)(s) of the corresponding solids for large groups of materials. For 35 alkali and coinage-metal halides, as well as alkali metal hydrides, Delta(at)H(o)(s) = 1.1203 Delta(at)H(o)(g) + 167.0 kJ mol(-1) is found; the standard error is SE = 16.0 kJ mol(-1), and the correlation coefficient is R = 0.9946. The solid coinage-metal monohydrides, CuH(s), AgH(s), and AuH(s), are predicted to be unstable with respect to the formation from the metals and elemental hydrogen by an approximately constant standard enthalpy of formation, Delta(f)H(o)(s) approximately +80 +/- 20 kJ mol(-1). Solid AuF is predicted to be marginally stable, having Delta(f)H(o)(s) = -60 +/- 50 kJ mol(-1) and standard a Gibbs energy of formation Delta(f)G(o)(s) approximately -40 +/- 50 kJ mol (-1). Triatomic alkaline-earth dihalides MX2 obey a similar linear relationship. The combined data of altogether 51 materials obey the relationship Delta(at)H(o)(s) = 1.2593 Delta(at)H(o)(g) + 119.9 kJ mol(-1) with R = 0.9984 and SE = 18.5 kJ mol(-1). The atomization enthalpies per atom of 25 data pairs of diatoms and solids in the groups 14-14, 13-15, and 2-16 are related as Delta(at)H(o)(s) = 2.1015 Delta(at)H(o)(g) + 231.9 kJ mol(-1) with R = 0.9949 and SE = 24.0 kJ mol(-1). Predictions are made for the GeC, GaSb, Hf2, TlN, BeS, MgSe, and MgTe molecules and for the solids SiPb, GePb, SnPb, and the thallium pnictides. Exceptions to the rule, such as SrO and BaO, are rationalized. Standard enthalpies of sublimation, Delta(subl)H(o) = Delta(at)H(o)(s) - Delta(at)H(o)(g), are calculated as a linear function of Delta(at)H(o)(g) profiting from the above linear relationships, and predictions for the Delta(subl)H(o) of the thallium pnictides are given. The validity of the new empirical relationships is limited to substances where at least one of the constituent elements is solid in its standard state. Reasons for the late discovery of such relationships are given, and a meaningful ABT is recommended by using Delta(at)H(o) as an important ordering and reference state function.  相似文献   

10.
The energetics of the C-F, C-Cl, C-Br, and C-I bonds in 2-haloethanols was investigated by using a combination of experimental and theoretical methods. The standard molar enthalpies of formation of 2-chloro-, 2-bromo-, and 2-iodoethanol, at 298.15 K, were determined as Delta(f)H(degree)m(CH2CH2OH, l) = -315.5 +/- 0.7 kJ.mol-1, Delta(f)H(degree)mBrCH2CH2OH, l) = -275.8 +/- 0.6 kJ.mol-1, Delta(f)H(degree)m(ICH2CH2OH, l) = -207.3 +/- 0.7 kJ.mol-1, by rotating-bomb combustion calorimetry. The corresponding standard molar enthalpies of vaporization, Delta(vap)H(degree)m(ClCH2CH2OH) = 48.32 +/- 0.37 kJ.mol-1, Delta(vap)H(degree)m(BrCH2CH2OH) = 54.08 +/- 0.40 kJ.mol-1, and Delta(vap)H(degree)m(ICH2CH2OH) = 57.03 +/- 0.20 kJ.mol-1 were also obtained by Calvet-drop microcalorimetry. The condensed phase and vaporization enthalpy data lead to Delta(f)H(degree)m(ClCH2CH2OH, g) = -267.2 +/- 0.8 kJ.mol-1, Delta(f)H(degree)m(BrCH2CH2OH, g) = -221.7 +/- 0.7 kJ.mol-1, and Delta(f)H(degree)m(ICH2CH2OH, g) = -150.3 +/- 0.7 kJ.mol-1. These values, together with the enthalpy of selected isodesmic and isogyric gas-phase reactions predicted by density functional theory (B3LYP/cc-pVTZ) and CBS-QB3 calculations were used to derive the enthalpies of formation of gaseous 2-fluoroethanol, Delta(f)H(degree)m(FCH2CH2OH, g) = -423.6 +/- 5.0 kJ.mol-1, and of the 2-hydroxyethyl radical, Delta(f)H(degree)m(CH2CH2OH, g) = -28.7 +/- 8.0 kJ.mol-1. The obtained thermochemical data led to the following carbon-halogen bond dissociation enthalpies: DHo(X-CH2CH2OH) = 474.4 +/- 9.4 kJ.mol-1 (X = F), 359.9 +/- 8.0 kJ.mol-1 (X = Cl), 305.0 +/- 8.0 kJ.mol-1 (X = Br), 228.7 +/- 8.1 kJ.mol-1 (X = I). These values were compared with the corresponding C-X bond dissociation enthalpies in XCH2COOH, XCH3, XC2H5, XCH=CH2, and XC6H5. In view of this comparison the computational methods mentioned above were also used to obtain Delta(f)H(degree)m-594.0 +/- 5.0 kJ.mol-1 from which DHo(F-CH2COOH) = 435.4 +/- 5.4 kJ.mol-1. The order DHo(C-F) > DHo(C-Cl) > DHo(C-Br) > DHo(C-I) is observed for the haloalcohols and all other RX compounds. It is finally concluded that the major qualitative trends exhibited by the C-X bond dissociation enthalpies for the series of compounds studied in this work can be predicted by Pauling's electrostatic-covalent model.  相似文献   

11.
The enthalpies of combustion and sublimation of 2,5-thiophenedicarboxylic acid [CASRN 4282-31-9] were measured by rotary-bomb combustion calorimetry and the method of transference in a saturated stream of nitrogen, and the gas-phase enthalpy of formation was determined, Delta(f)H(o)(m)(g) = -(632.6 +/- 2.2) kJ x mol(-1). Standard ab initio molecular orbital calculations at the G2(MP2) and G3(MP2) levels were performed, and a theoretical study on the molecular and electronic structure of the compound has been carried out. The three most stable conformers have been explicitly taken into account. The calculated enthalpy of formation averaged using three different isodesmic reactions, -631.1 kJ x mol(-1), is in very good agreement with the experimental value. A comparison of the substituent effect of the carboxylic groups in benzene and thiophene ring has been made. The relative stability obtained for the substitution of two H atoms by COOH in position 2,5- for thiophene and 1,4- for benzene involve the same energetic effects, DeltaDelta(f)H(o)(m)= -747.6 +/- 2.4 and -748.2 +/- 2.7 kJ x mol(-1), respectively.  相似文献   

12.
We have investigated the thermochemistry and ion energetics of the oxybenzone (2-hydroxy-4-methoxy-benzophenone, C14H12O3, 1H) molecule. The following parameters have been determined for this species: gas-phase enthalpy for the of neutral molecule at 298.15K, (Delta(f)H0(m)(g) = -303.5 +/- 5.1 kJ x mol-1), the intrinsic (gas-phase) acidity (GA(1H) = 1402.1 +/- 8.4 kJ x mol-1), enthalpy of formation for the oxybenzone anion (Delta(f)H0(m)(1-,g) = -402.3 +/- 9.8 kJ x mol-1). We also have obtained the enthalpy of formation of, 4-hydroxy-4'-methoxybenzophenone (Delta(f)H0(m)(g) = -275.4 +/- 10 kJ x mol-1) and 3-methoxyphenol anion (Delta(f)H0(m)(C7H7O2-,g) = -317.7 +/- 8.7 kJ x mol-1). A reliable experimental estimation of enthalpy related to intramolecular hydrogen bonding in oxybenzone has also been obtained (30.1 +/- 6.3 kJ x mol-1) and compared with our theoretical calculations at the B3LYP/6-311++G** level of theory, by means of an isodesmic reaction scheme. In addition, heat capacities, temperature, and enthalpy of fusion have been determined for this molecule by differential scanning calorimetry.  相似文献   

13.
The standard molar enthalpy of sublimation of monoclinic cyclopentadienyltricarbonylmanganese, Mn(eta (5)-C 5H 5)(CO) 3, at 298.15 K, was determined as Delta sub H m (o)[Mn(eta (5)-C 5H 5)(CO) 3] = 75.97 +/- 0.37 kJ x mol (-1) from Knudsen effusion and Calvet-drop microcalorimetry measurements, thus considerably improving the very large inaccuracy (>10 kJ x mol (-1)) of the published data. The obtained value was used to assess the extension of the OPLS-based all-atom force field we previously developed for iron metallocenes to manganese organometallic compounds. The modified force field was able to reproduce the volumetric properties (density and unit-cell volume) of crystalline Mn(eta (5)-C 5H 5)(CO) 3 with a deviation of 0.6% and the experimentally determined enthalpy of sublimation with an accuracy of 1 kJ x mol (-1). The interaction (epsilon) and atomic-diameter (sigma) parameters of the Lennard-Jones (12-6) potential function used to calculate dispersion contributions within the framework of the force field were found to be transferable from iron to manganese.  相似文献   

14.
The 0 K dissociative ionization onsets of C2H3X --> C2H3(+) + X (X = Cl, I) are measured by threshold photoelectron-photoion coincidence spectroscopy. The heats of formation of C2H3Cl (Delta H(f,0K)(0) = 30.2 +/- 3.2 kJ mol(-1) and Delta(H f,298K)(0) = 22.6 +/- 3.2 kJ mol(-1)) and C2H3I (Delta(H f,0K)(0) = 140.2 +/- 3.2 kJ mol(-1) and Delta(H f,298K)(0) = 131.2 +/- 3.2 kJ mol(-1)) and C- X bond dissociation enthalpies as well as those of their ions are determined. The data help resolve a longstanding discrepancy among experimental values of the vinyl chloride heat of formation, which now agrees with the latest theoretical determination. The reported vinyl iodide heat of formation is the first reliable experimental determination. Additionally, the adiabatic ionization energy of C2H3I (9.32 +/- 0.01 eV) is measured by threshold photoelectron spectroscopy.  相似文献   

15.
The formation constants of UO2SO4 (aq), UO2(SO4)2(2-), and UO2(SO4)3(4-) were measured in aqueous solutions from 10 to 75 degrees C by time-resolved laser-induced fluorescence spectroscopy (TRLFS). A constant enthalpy of reaction approach was satisfactorily used to fit the thermodynamic parameters of stepwise complex formation reactions in a 0.1 M Na(+) ionic medium: log 10 K 1(25 degrees C) = 2.45 +/- 0.05, Delta r H1 = 29.1 +/- 4.0 kJ x mol(-1), log10 K2(25 degrees C) = 1.03 +/- 0.04, and Delta r H2 = 16.6 +/- 4.5 kJ x mol(-1). While the enthalpy of the UO2(SO4)2(2-) formation reaction is in good agreement with calorimetric data, that for UO2SO4 (aq) is higher than other values by a few kilojoules per mole. Incomplete knowledge of the speciation may have led to an underestimation of Delta r H1 in previous calorimetric studies. In fact, one of the published calorimetric determinations of Delta r H1 is here supported by the TRLFS results only when reinterpreted with a more correct equilibrium constant value, which shifts the fitted Delta r H1 value up by 9 kJ x mol(-1). UO2(SO 4) 3 (4-) was evidenced in a 3 M Na (+) ionic medium: log10 K3(25 degrees C) = 0.76 +/- 0.20 and Delta r H3 = 11 +/- 8 kJ x mol(-1) were obtained. The fluorescence features of the sulfate complexes were observed to depend on the ionic conditions. Changes in the coordination mode (mono- and bidentate) of the sulfate ligands may explain these observations, in line with recent structural data.  相似文献   

16.
The enthalpies of formation of pure liquid and gas-phase (Z)-4-hydroxy-3-penten-2-one and 2,4-pentanedione are examined in the light of some more recent NMR studies on the enthalpy differences between gas-phase enthalpies of the two tautomers. Correlation gas chromatography experiments are used to evaluate the vaporization enthalpies of the pure tautomers. Values of (51.2 +/- 2.2) and (50.8 +/- 0.6) kJ.mol(-1) are measured for pure 2,4-pentanedione and (Z)-4-hydroxy-3-penten-2-one, respectively. The value of (50.8 +/- 0.6) kJ.mol(-1) can be contrasted to a value of (43.2 +/- 0.2) kJ.mol(-1) calculated for pure (Z)-4-hydroxy-3-penten-2-one when the vaporization enthalpy is measured in a mixture of tautomers. The difference is attributed to an endothermic enthalpy of mixing that destabilizes the mixture relative to the pure components. Calculation of new enthalpies of formation for (Z)-4-hydroxy-3-penten-2-one and 2,4-pentanedione in both the gas, Delta(f)H degrees (m)(g) = (-378.2 +/- 1.2) and (-358.9 +/- 2.5) kJ.mol(-1), respectively, and liquid phases, Delta(f)H degrees (m)(l) = (-429.0 +/- 1.0) and (-410.1 +/- 1.2) kJ.mol(-1), respectively, results in enthalpy differences between the two tautomers both in the liquid and gas phases that are identical within experimental error, and in excellent agreement with recent gas-phase NMR studies.  相似文献   

17.
The kinetics of the reaction HBrO(2) + HBrO(2) --> HOBr + BrO(3)(-) + H(+) is investigated in aqueous HClO(4) (0.04-0.9 M) and H(2)SO(4) (0.3-0.9 M) media and at temperatures in the range 15-38 degrees C. The reaction is found to be cleanly second order in [HBrO(2)], with the experimental rate constant having the form k(exp) = k + k'[H(+)]. The half-life of the reaction is on the order of a few tenths of a second in the range 0.01 M < [HBrO(2)](0) < 0.02 M. The detailed mechanism of this reaction is discussed. The activation parameters for kare found to be E(double dagger) = 19.0 +/- 0.9 kJ/mol and DeltaS(double dagger) = -132 +/- 3 J/(K mol) in HClO(4), and E(double dagger) = 23.0 +/- 0.5 kJ/mol and DeltaS(double dagger) = -119 +/- 1 J/(K mol) in H(2)SO(4). The activation parameters for k' are found to be E(double dagger) = 25.8 +/- 0.5 kJ/mol and DeltaS(double dagger) = -106 +/- 1 J/(K mol) in HClO(4), and E(double dagger) = 18 +/- 3 kJ/mol and DeltaS(double dagger) = -130 +/- 11 J/(K mol) in H(2)SO(4). The values Delta(f)H(29)(8)(0)[BrO(2)(aq)] = 157 kJ/mol and Delta(f)H(29)(8)(0)[HBrO(2)(aq)] = -33 kJ/mol are estimated using a trend analysis (bond strengths) based on the assumption Delta(f)H(29)(8)(0)[HBrO(2)(aq)] lies between Delta(f)H(29)(8)(0)[HOBr(aq)] and Delta(f)H(29)(8)(0)[HBrO(3)(aq)] as Delta(f)H(29)(8)(0)[HClO(2)(aq)] lies between Delta(f)H(29)(8)(0)[HOCl(aq)] and Delta(f)H(29)(8)(0)[HClO(3)(aq)]. The estimated value of Delta(f)H(29)(8)(0)[BrO(2)(aq)] agrees well with calculated gas-phase values, but the estimated value of Delta(f)H(29)(8)(0)[HBrO(2)(aq)], as well as the tabulated value of Delta(f)H(29)(8)(0)[HClO(2)(aq)], is in substantial disagreement with calculated gas-phase values. Values of Delta(r)H(0) are estimated for various reactions involving BrO(2) or HBrO(2).  相似文献   

18.
The sequential ethene (C2H4) loss channels of energy-selected ethylphosphine ions have been studied using threshold photoelectron photoion coincidence (TPEPICO) spectroscopy in which ion time-of-flight (TOF) distributions are recorded as a function of the photon energy. The ion TOF distributions and breakdown diagrams have been modeled in terms of the statistical RRKM theory for unimolecular reactions, providing 0 K dissociation onsets, E0, for the ethene loss channels. Three RRKM curves were used to model the five measurements, since two of the reactions differ only by the internal energy of the parent ion. This series of dissociations provides a detailed check of the calculation of the product energy distribution for sequential reactions. From the determined E0's, the heats of formation of several ethylphosphine neutrals and ions have been determined: Delta(f)H degrees 298K[P(C(2)H(5))3] = -152.7 +/- 2.8 kJ/mol, Delta(f)H degrees 298K[P(C(2)H(5))3+] = 571.6 +/- 4.0 kJ/mol, Delta(f)H degrees 298K[HP(C(2)H(5))2] = -89.6 +/- 2.1 kJ/mol, Delta(f)H degrees 298K[HP(C(2)H(5))2+] = 669.9 +/- 2.5 kJ/mol, Delta(f)H degrees 298K[H(2)PC(2)H(5)] = -36.5 +/- 1.5 kJ/mol, Delta(f)H degrees 298K[H(2)PC(2)H(5)+] = 784.0 +/- 1.9 kJ/mol. These values have been supported by G2 and G3 calculations using isodesmic reactions. Coupled cluster calculations have been used to show that the C2H4 loss channel, which involves a hydrogen transfer step, proceeds without a reverse energy barrier.  相似文献   

19.
The energetics of the phenolic O-H bond in a series of 2- and 4-HOC 6H 4C(O)Y (Y = H, CH3, CH 2CH=CH2, C[triple bond]CH, CH2F, NH2, NHCH 3, NO2, OH, OCH3, OCN, CN, F, Cl, SH, and SCH3) compounds and of the intramolecular O...H hydrogen bond in 2-HOC 6H 4C(O)Y, was investigated by using a combination of experimental and theoretical methods. The standard molar enthalpies of formation of 2-hydroxybenzaldehyde (2HBA), 4-hydroxybenzaldehyde (4HBA), 2'-hydroxyacetophenone (2HAP), 2-hydroxybenzamide (2HBM), and 4-hydroxybenzamide (4HBM), at 298.15 K, were determined by micro- or macrocombustion calorimetry. The corresponding enthalpies of vaporization or sublimation were also measured by Calvet drop-calorimetry and Knudsen effusion measurements. The combination of the obtained experimental data led to Delta f H m (o)(2HBA, g) = -238.3 +/- 2.5 kJ.mol (-1), DeltafHm(o)(4HBA, g) = -220.3 +/- 2.0 kJ.mol(-1), Delta f H m (o)(2HAP, g) = -291.8 +/- 2.1 kJ.mol(-1), DeltafHm(o)(2HBM, g) = -304.8 +/- 1.5 kJ.mol (-1), and DeltafHm(o) (4HBM, g) = -278.4 +/- 2.4 kJ.mol (-1). These values, were used to assess the predictions of the B3LYP/6-31G(d,p), B3LYP/6-311+G(d,p), B3LYP/aug-cc-pVDZ, B3P86/6-31G(d,p), B3P86/6-311+G(d,p), B3P86/aug-cc-pVDZ, and CBS-QB3 methods, for the enthalpies of a series of isodesmic gas phase reactions. In general, the CBS-QB3 method was able to reproduce the experimental enthalpies of reaction within their uncertainties. The B3LYP/6-311+G(d,p) method, with a slightly poorer accuracy than the CBS-QB3 approach, achieved the best performance of the tested DFT models. It was further used to analyze the trends of the intramolecular O...H hydrogen bond in 2-HOC 6H 4C(O)Y evaluated by the ortho-para method and to compare the energetics of the phenolic O-H bond in 2- and 4-HOC 6H 4C(O)Y compounds. It was concluded that the O-H bond "strength" is systematically larger for 2-hydroxybenzoyl than for the corresponding 4-hydroxybenzoyl isomers mainly due to the presence of the intramolecular O...H hydrogen bond in the 2-isomers. The observed differences are, however, significantly dependent on the nature of the substituent Y, in particular, when an intramolecular H-bond can be present in the radical obtained upon cleavage of the O-H bond.  相似文献   

20.
The bonding energetics in a variety of alkaline metal, alkoxides and phenoxides, MOR, was investigated based on the corresponding enthalpies of formation in the crystalline state determined by reaction-solution calorimetry. The results obtained at 298.15 K were as follows: Delta(f)H(m)(o)(MOR, cr)/kJ mol(-1) = 382.7+/-1.4 (LiOC(6)H(5)), 513.6+/-2.5 (NaO-nC(6)H(13)), 326.4+/-1.4 (NaOC(6)H(5)), 375.2+/-3.4 (KOCH(3)), 434.5+/-2.7 (KOC(2)H(5)), 467.1+/-5.2 (KO-nC(3)H(7)), 459.3+/-2.1 (KO-nC(4)H(9)), 464.6+/-5.7 (KO-tC(4)H(9)), 464.3+/-2.5 (KO-nC(6)H(13)), 333.3+/-3.1 (KOC(6)H(5)), 380.6+/-2.9 (RbOCH(3)), 434.1+/-2.9 (RbOC(2)H(5)), 345.3+/-2.9 (LiOC(6)H(5)), 379.1+/-3.0 (CsOCH(3)), 432.3+/-3.1 (CsOC(2)H(5)), 466.9+/-5.0 (CsO-nC(3)H(7)), 461.3+/-3.5 (CsO-nC(4)H(9)), 461.9+/-2.5 (CsO-tC(4)H(9)), 349.2+/-1.4 (CsOC(6)H(5)). These results together with revised Delta(f)H(m)(o)(MOR, cr) values from the literature, were used to derive a consistent set of lattice energies for the MOR compounds and discuss general trends in the structure-energetics relationship based on the Kapustinskii equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号