首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electronic band structures of wurtzite GaN with Ga and N vacancy defects are investigated by means of the first-principles total energy calculations in the neutral charge state. Our results show that the band structures can be significantly modified by the Ga and N vacancies in the GaN samples. Generally, the width of the valence band is reduced and the band gap is enlarged. The defect-induced bands can be introduced in the band gap of GMV due to the Ga and N vacancies. Moreover, the GaN with high density of N vacancies becomes an indirect gap semiconductor. Three defect bands due to Ga vacancy defects are created within the band gap and near the top of the valence band. In contrast, the N vacancies introduce four defect bands within the band gap. One is in the vicinity of the top of the valence band, and the others are near the bottom of the conduction band. The physical origin of the defect bands and modification of the band structures due to the Ga and N vacancies are analysed in depth.  相似文献   

2.
李登峰  李柏林  肖海燕  董会宁 《中国物理 B》2011,20(6):67101-067101
The electronic properties of twinned ZnS nanowires (NWs) with different diameters were investigated based on first-principles calculations. The energy band structures, projected density of states and the spatial distributions of the bottom of conduction band and the top of the valence band were presented. The results show that the twinned nanowires exhibit a semiconducting character and the band gap decreases with increasing nanowire diameter due to quantum confinement effects. The valence band maximum and conduction band minimum originate mainly from the S-p and Zn-s orbitals at the core of the nanowires, respectively, which was confirmed by their spatial charge density distribution. We also found that no heterostructure is formed in the twinned ZnS NWs since the valence band maximum and conduction band minimum states are distributed along the NW axis uniformly. We suggest that the hexagonal (2H) stacking inside the cubic (3C) stacking has no effect on the electronic properties of thin ZnS NWs.  相似文献   

3.
The magnetism of GaN (100) and (101) surfaces containing neutral intrinsic defects has been investigated using ab inito calculations. Ideal Ga-ended GaN (100) surfaces and (101) surfaces are nonmagnetic. After surface relaxation, an N-ended GaN (100) surface transforms to a Ga-end, which presents local magnetic moments being ferromagnetically coupled. Neutral gallium vacancies at the (100) surface bring about large magnetic moments, which are ferromagnetically coupled. The spin-polarization of 2p electrons of nitrogen atoms is responsible for the induced magnetic moments. Neutral nitrogen vacancies at the (101) surface induce a zero magnetic moment. Neutral gallium vacancies at the (101) surface might lead to an antiferromagnetic state.  相似文献   

4.
Electronic state calculations for point defects on the GaSb(110) surface are presented using a cluster, in order to indicate theoretically the usefulness of the defect model as a mechanism of the Fermi level pinning in Schottky barriers. The results demonstrate that the presence of atomic Ga at surface Sb vacancy sites in addition to surface Ga vacancies gives electronic states localized near the top of the valence band which can be responsible for the pinning observed experimentally.  相似文献   

5.
6.
We present results of ab initio calculations for vacancies and divacancies in GaN. Particular attention is paid to nitrogen vacancies and mixed Ga-N divacancies in negatively charged states, which in n-type GaN are found to be energetically comparable with gallium vacancies. We also demonstrate that the activation energy for self-diffusion over the nitrogen sublattice is lower than over the gallium one for all Fermi-level positions, which implies the nitrogen vacancies are major defects in samples annealed at high temperatures. Possibilities for direct observations of nitrogen vacancies through positron annihilation experiments are discussed.  相似文献   

7.
Electronic properties of both Pb and S vacancy defects in PbS(1^-00) have been studied using the first-principles density functional theory (DFT) calculations with the plane-wave pseudopotentials. It is found that the density of states (DOS) near the top of the valence band and the bottom of the conduction band is significantly modified by these defects. Our calculation indicates that in the case of S vacancy defects the Fermi energy shifts to the conduction band making it as an n-type PbS (donor). However, in the case of Pb vacancy, because of the appreciable change of the DOS, the system acts as a p-type PbS (accepter). In addition, the structural relaxation shows that the defect leads to outward relaxation of the nearest-neighbouring atoms and inward relaxation of the next-nearest neighbouring atoms.  相似文献   

8.
Kang J  Wu F  Li J 《J Phys Condens Matter》2012,24(16):165301
The effect of external transverse electric fields on the bandgaps of graphdiyne nanoribbons is investigated from first-principles calculations. The giant Stark effect is observed in the ribbons. When the field is applied, the valence and conduction band edge states are found to be strongly localized at low and high potential edges of the ribbon, respectively. Due to the wavefunction localization, the bandgap decreases with increasing field strength, and a semiconductor-metal transition occurs below a threshold field value. It is also shown that the bandgap decreasing rate depends linearly on the ribbon width. The tunable bandgap of a graphdiyne nanoribbon under an electric field would be helpful for practical applications.  相似文献   

9.
用密度泛函理论研究直径为9.5Å,15.9Å和22.5Å,未钝化和H钝化GaN纳米线的能带和态密度.结果表明:未钝化和H钝化GaN纳米线的能隙都是直接带隙,未钝化GaN纳米线的禁带宽度随着直径的增加减小,但是变化不明显,H钝化GaN纳米线的禁带宽度随着直径增大也是减小的,但是减小的幅度比未钝化的大.未钝化GaN纳米线表面N原子的2p电子主要聚集在价带顶,表面Ga原子的4p电子主要聚集在导带底,这两种电子都具有很强的局域性,而且决定着能隙值;加H钝化可以消除表面原子产生的表面效应.  相似文献   

10.
相琳琳  杨身园 《中国物理 B》2017,26(8):87103-087103
Using first-principles calculations based on density functional theory, we systematically study the structural deformation and electronic properties of wurtzite CdX(X = S, Se, Te) bulk and nanowires(NWs) under uniaxial [0001] strain. Due to the intrinsic shrinking strain induced by surface contraction, large NWs with {10ˉ10} facets have heavy hole(HH)-like valence band maximum(VBM) states, while NWs with {11ˉ20} facets have crystal hole(CH)-like VBM states. The external uniaxial strain induces an HH–CH band crossing at a critical strain for both bulk and NWs, resulting in nonlinear variations in band gap and hole effective mass at VBM. Unlike the bulk phase, the critical strain of NWs highly depends on the character of the VBM state in the unstrained case, which is closely related to the size and facet of NWs. The critical strain of bulk is at compressive range, while the critical strain of NWs with HH-like and CH-like VBM appears at compressive and tensile strain, respectively. Due to the HH–CH band crossing, the charge distribution of the VBM state in NWs can also be tuned by the external uniaxial strain. Despite the complication of the VBM state, the electron effective mass at conduction band minimum(CBM) of NWs shows a linear relation with the CBM–HH energy difference, the same as the bulk material.  相似文献   

11.
Results of an electroreflectance investigation of gallium antimonide in the 3.0–4.2 eV region are presented. The observed recurrence in this region of the spin-orbit splitting of the zone-center valence band states suggests a revised assignment for the observed recurrence in this region of the spin-orbit splitting of the zone-center valence band states suggests a revised assignment for the observed structure in terms of transitions to the second conduction band states.  相似文献   

12.
Using the scattering theoretical method, we have obtained the changes in the electronic structure induced by ideal vacancies or divacancies in titanium dioxide. No defect states are found in the gap. The creation of vacancy merely induced O-p derived resonances in the valence band and Ti-d derived resonances in the conduction band, due to the reduction of cation coordination. These conclusions are similar to those obtained for ideal TiO2 surfaces.  相似文献   

13.
14.
Nitrogen doping-induced changes in the electronic properties, defect formation, and surface structure of TiO2 rutile(110) and anatase(101) single crystals were investigated. No band gap narrowing is observed, but N doping induces localized N 2p states within the band gap just above the valence band. N is present in a N(III) valence state, which facilitates the formation of oxygen vacancies and Ti 3d band gap states at elevated temperatures. The increased O vacancy formation triggers the 1 x 2 reconstruction of the rutile (110) surface. This thermal instability may degrade the catalyst during applications.  相似文献   

15.
硅酸锌的电子结构   总被引:4,自引:3,他引:1       下载免费PDF全文
张华  冯夏  康俊勇 《发光学报》2006,27(5):750-754
采用局域密度泛函理论和第一性原理的方法,计算四方结构和六角结构硅酸锌的平衡晶格常数、电子态密度和能带结构。计算结果表明,四方结构硅酸锌的平衡晶格常数为0.71048nm,六角结构为1.40877nm,两者与实验值的误差均在1%左右。态密度图显示,主要电子态分布在-7.18~0.00eV和2.79~10.50eV两个能量区域;同时,不同元素电子对导带和价带有不同贡献,其中氧的p态电子对价带顶贡献最大,锌的s态电子对导带底贡献最大。能带计算表明,四方与六角结构硅酸锌均为直接带隙半导体,禁带宽度分别为2.66,2.89eV。  相似文献   

16.
Atomic and electronic properties of N-N split interstitial in GaN nanowires have been investigated using first principles calculations. The formation energy calculations show that the N-N interstitial favors substituting an N atom at the surface of the nanowires. The interstitial induces localized states in the band gap of GaN nanowires.  相似文献   

17.
Spin-polarized first-principles electronic structure and total energy calculations have been performed to better understand the magnetic properties of Co doped ZnO (ZnO:Co) with vacancies and Ga co-dopants. The paramagnetic state of ZnO:Co, in which Co ions lose their magnetic moments, has been found to be unstable. The total energy results show that acceptor-like Zn vacancies and donor-like Ga co-dopants render the anti-ferromagnetic (AFM) and ferromagnetic (FM) states to be more favorable, respectively. With O vacancies, ZnO:Co has been found to be in the weak FM state. These magnetic properties can be understood by the calculated O- and Zn-vacancies and Ga co-dopant induced changes of the electronic structure, which suggest that AFM and FM Co-Co couplings are mediated by O 2p-Co majority (↑)-spin 3d hybridized states in the valence band of ZnO and O-vacancy-derived p states or Ga sp states in the ZnO band gap, respectively. For ZnO:Co with Zn vacancies (Ga co-dopants) the AFM (FM) coupling outweighs the FM (AFM) coupling and results in the AFM (FM) state, while for ZnO:Co with O vacancies, both the FM and AFM couplings are enhanced by similar degrees and result in the weak FM state. This study reveals a competition between FM and AFM couplings in ZnO:Co with vacancies and Ga co-dopants, the detailed balancing between which determines the magnetic properties of these materials.  相似文献   

18.
《中国物理 B》2021,30(7):77102-077102
Co_3Sn_2S_2 has attracted a lot of attention for its multiple novel physical properties, including topological nontrivial surface states, anomalous Hall effect, and anomalous Nernst effect. Vacancies, which play important roles in functional materials, have attracted increasing research attention. In this paper, by using density functional theory calculations, we first obtain band structures and magnetic moments of Co_3Sn_2S_2 with exchange–correlation functionals at different levels. It is found that the generalized gradient approximation gives the positions of Weyl points consistent with experiments in bulk Co_3Sn_2S_2. We then investigate the electronic structures of defects on surfaces with S and Sn terminations which have been observed in experiments. The results show that the single sulfur vacancy on the S-terminated surface introduces localized bond states inside the bandgap near the Fermi level. For di-and tri-sulfur vacancies, the localized defect states hybridize with neighboring ones, forming bonding states as well as anti-bonding states. The Sn vacancy on the Sn-terminated surface also introduces localized bond states, which are merged with the valence bands. These results provide a reference for future experimental investigations of vacancies in Co_3Sn_2S_2.  相似文献   

19.
Employing the first-principle calculations based on the density functional theory (DFT) and the Molecule Orbital theory (MO), we have researched the electronic structures of the reduced anatase TiO2 and its visible light photoactivity. The study is emphasized on the O vacancy, including the components of the defect states, the relationship with the bulk states and the way in which these electrons occupying the defect states are distributed in the real space. We find that the origin of the visible light photoactivity should be due to the transition of the excited electrons from the defect states σg orbital to the σu orbital in the upper conduction bands, rather than arising from the reduction of the band gap. The calculated results indicate that the localized defect states induced by the neutral and doubly ionized oxygen vacancies are all located in the band gap.  相似文献   

20.
The band structures of 32 of the most important semiconductor crystals are calculated using an efficient, minimal basis, orthogonalized LCAO method. These include the diamond structure of C, Si, Ge, α-Sn; the zinc blende structure of β-SiC, BN, BP, AlP, AlAs, AlSb, GaP, GaAs, GaSb, InP, InAs, InSb, β-ZnS, ZnSe, ZnTe, CdS, CdTe; the wurtzite structure of AlN, GaN, ZnO, α-ZnS, CdS, CdSe; the sodium chloride structure of CdO, GeTe, SnTe and trigonal Se and Te. The calculations, which involve diagonalizations of small size matrix equations yield results having the following characteristics: (1) satisfactory valence bands and lower conduction bands and bulk densities of states; (2) the gap sizes and the locations of valence band maximum and conduction band minimum in agreement with experiment; (3) reasonable values of fractional ionicity and electron and hole effective masses. These are achieved by fine-tuning the exchange parameters in the construction of the potentials. Application of this approach to the study of the electronic structures of disordered and other complex semiconductor systems is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号