首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
设$T:X\rightarrow X$是紧度量空间$X$上的连续映射, $\mathcal{F}=\{f_n\}_{n\geq 1}$是$X$上的一族连续函数. 如果 $\mathcal{F}$是渐近次可加的, 那么$\sup\limits_{x\in \mathrm{Reg}(\mathcal{F},T)}\lim\limits_{n\rightarrow\infty}\frac 1 n f_n (x)=\sup\limits_{x\in X} \limsup\limits_{n\rightarrow\infty}\frac 1 n f_n (x) =\lim\limits_{n\rightarrow\infty}\frac 1 n \max\limits_{x\in X}f_n (x)=\sup\{\mathcal{F}^*(\mu):\mu\in\mathcal{M}_T\}$, 其中$\mathcal{M}_T$表示$T$-\!\!不变的Borel概率测度空间, $\mathrm{Reg}(\mathcal{F},T)$ 表示函数族$\mathcal{F}$的正规点集, $\mathcal{F}^*(\mu)=\lim\limits_{n\rightarrow\infty}\frac 1 n \int f_n \mathrm{d}\mu$. 这把Jenkinson, Schreiber 和 Sturman 等人的一些结果推广到渐近次可加势函数, 并且给出了次可加势函数从属原理成立的充分条件, 最后给出了 一些相关的应用.  相似文献   

2.
设$\mathcal {A,\ B}$ 是含单位元的Banach代数, $\mathcal M$ 是一个Banach $\mathcal {A,\ B}$-双模. $\mathcal {T}=\left ( \begin{array}{cc} \mathcal {A} & \mathcal M \\ & \mathcal {B} \\ \end{array} \right )$按照通常矩阵加法和乘法,范数定义为$\|\left( \begin{array}{cc} a & m \\ & b\\ \end{array} \right)\|=\|a\|_{\mathcal A}+\|m\|_{\mathcal M}+\|b\|_{\mathcal B}$,构成三角Banach 代数.如果从$\mathcal T$到其$n$次对偶空间$\mathcal T^{n}$上的Lie导子都是标准的,则称$\mathcal T$是Lie $n$弱顺从的.本文研究了三角Banach代数$\mathcal T$上的Lie $n$弱顺从性,证明了有限维套代数是Lie $n$弱顺从的.  相似文献   

3.
2×2阶上三角型算子矩阵的Moore-Penrose谱   总被引:1,自引:1,他引:1  
设$H_{1}$和$H_{2}$是无穷维可分Hilbert空间. 用$M_{C}$表示$H_{1}\oplusH_{2}$上的2$\times$2阶上三角型算子矩阵$\left(\begin{array}{cc} A & C \\ 0 & B \\\end{array}\right)$. 对给定的算子$A\in{\mathcal{B}}(H_{1})$和$B\in{\mathcal{B}}(H_{2})$,描述了集合$\bigcap\limits_{C\in{\mathcal{B}}(H_{2},H_{1})}\!\!\!\sigma_{M}(M_{C})$与$\bigcup\limits_{C\in{\mathcal{B}}(H_{2},H_{1})}\!\!\!\sigma_{M}(M_{C})$,其中$\sigma_{M}(\cdot)$表示Moore-Penrose谱.  相似文献   

4.
设Q2=[0, 1]2是Eulid空间$\R^2$上的单位正方形, ${\mathcal{T}}_{\alpha,\beta}$是如下定义在Schwartz函数类${\mathcal{S}}(\R^3)$上振荡奇异积分算子
${\mathcal{T}}_{\alpha, \beta}f(x,y,z)=\int_{Q^2}f(x-t,y-s,z-t^ks^j)e^{-it^{-\beta_1}s^{-\beta_2}}t^{-1-\alpha_1} s^{-1-\alpha_2}dtds.
$
本文首先建立了该算子的Lp有界性, 然后利用这些结果获得了乘积空间上的一些奇异积分算子的(p, p)有界性.  相似文献   

5.
吴文明 《中国科学A辑》2007,37(11):1283-1290
在上半复平面$\mathbb{H}$上给定双曲测度$dxdy/y^{2}$, 群$G={\rm PSL}_{2}(\mathbb{R})$ 在$\mathbb{H}$上的分式线性作用导出了$G$在Hilbert空间$L^{2}(\mathbb{H}, dxdy/y^{2})$上的酉表示$\alpha$. 证明了交叉积 $\mathcal{R}(\mathcal{A}, \alpha)$是$\mathrm{I}$型von Neumann代数, 其中$\mathcal{A}= \{M_{f}:f\in L^{\infty}(\mathbb{H},dxdy/y^{2} )\}$. 具体地, 交叉积代数$\mathcal{R}(\mathcal{A}, \alpha)$与von Neumann代数$\mathcal{B}(L^{2}(P, \nu))\overline{\otimes}\mathcal{L}_{K}$是*-同构的, 其中$\mathcal{L}_{K}$是$G$中子群 $K$的左正则表示生成的群von Neumann代数.  相似文献   

6.
Denote R an associative ring,\[\mathcal{M}\] a right modular idea of R,i,e,there exists an \[a \in R\] such that for all \[r \in R\],\[r + ar \in \mathcal{M}\], Let \[\{ {\mathcal{M}_i}\} \] be a given set of modular right ideals of R.Then introduce the following definition: Definition 1.Let \[\mathcal{M}\] be a modular right ideals of R. An element a of \[\mathcal{M}\] is called an \[\mathcal{M}\]-right quasi-regular element,if{i+ai}=\[\mathcal{M}\] for all \[i \in \mathcal{M}\].A right ideal L of R is called \[i \in \mathcal{M}\]-regular right ideal if every element of L is an \[i \in \mathcal{M}\]-right quasiregular element. Definition 2. Let \[i \in \mathcal{M}\] and \[{\mathcal{M}^'}\] be two right ideals of R,\[{\mathcal{M}^'}\] is called \[{\mathcal{M}^'}\]-modular if \[{\mathcal{M}^'} \subset \mathcal{M}\] and if there exist an element \[a \in \mathcal{M}\] such that for all \[i \in \mathcal{M}\],\[i + ai \in {\mathcal{M}^'}\]. Now we introduce the symbol \[{\hat \mathcal{M}}\].Let \[\mathcal{M} \in \sum \].Then if \[\mathcal{M}\] is an \[\mathcal{M}\]-regular right ideal,we put \[\hat \mathcal{M} = \mathcal{M}\];if \[\mathcal{M}\] is not an \[\mathcal{M}\]-regular ideal,we put \[{\hat \mathcal{M}}\] to be an \[\mathcal{M}\]-maximal modular right ideal in \[\mathcal{M}\].Let \[\mathcal{M} \in \sum \].Then if \[\mathcal{M}\] is not an \[\mathcal{M}\]-regular right ideal,we put \[\hat \mathcal{M} = \mathcal{M} \in {{\hat \sum }_\mathcal{M}} = \{ \hat \mathcal{M}|\hat \mathcal{M} is \mathcal{M}\} \]-maximal modular right ideal};if \[\mathcal{M}\] is an \[\mathcal{M}\]-right regular right idal,we put \[{{\hat \sum }_\mathcal{M}} = \mathcal{M}\]. Now we put \[\hat \sum = \{ \hat \mathcal{M}|\hat \mathcal{M} \in {{\hat \sum }_\mathcal{M}},\mathcal{M} \in \sum \} \] and \[\hat J = \cup {L_i}\] (1) for an element \[\mathcal{M} \in \sum \],where \[{L_i}\] are \[\mathcal{M}\]-regular right ideal,and U is set theoretical sum.Furthermore we put \[\hat J = \mathop \cap \limits_{\mathcal{M} \in \sum } {{\hat J}_\mathcal{M}}\] (2) and \[{J_1} = \{ b|b \in \mathop \cap \limits_{\mathcal{M} \in \sum } \mathcal{M},\],b satisfying the following condition}, (3) i,e,if |b)+\[{\mathcal{M}^{{\text{1}}}}{\text{ = }}\mathcal{M} \in \sum \] for an \[\mathcal{M}\]-modular right ideal \[{\mathcal{M}^{{\text{1}}}}\],then it must be \[{\mathcal{M}^{{\text{1}}}}{\text{ = }}\mathcal{M}\],where |b) is the intersection of all right ideals including b. Definition 3.an element \[\mathcal{M}\] of \[\sum \] is called satisfying J1-left idealizer condition,if \[x \in {J_1},y \in \mathcal{M}\],then \[rx + ryx \in \mathcal{M}\] for all \[r \in R\].The \[\sum \] is called satisfying J1-left idealizer condition(briefly,J1-l,i,c) if every \[\mathcal{M}\] \[\mathcal{M}\] of \[\sum \] is satisfying J1-l,i.c. Theorem 1. Suppose that \[\sum = \{ \mathcal{M}\} \] is satisfying J1-l.i.c.and put \[\beta = \hat \mathcal{M}\];\[R = \{ x \in R|Rx \subset \hat \mathcal{M}\} ,\hat \mathcal{M} \in \hat \sum \],then J1 is an ideal and \[{J_1} = \hat J = \sum\limits_{\hat \mathcal{M} \in \hat \sum } {\hat \mathcal{M} = \mathop \cap \limits_{\hat \mathcal{M} \in \hat \sum } } \beta \] Definition 4. Let \[\sum = \{ \mathcal{M}\} \] be satisfying J1-l.i.c.\[\hat \sum = \{ \hat \mathcal{M}|\hat \mathcal{M} \in {{\hat \sum }_\mathcal{M}},\mathcal{M} \in \sum \} \] as stated in (1), then we call ideal \[{J_1} = \mathop \cup \limits_{\hat \mathcal{M} \in \hat \sum } \hat \mathcal{M}\] the \[\sum \]-radioal of R. If J1=0, then R is called \[\sum \]-semisimple ring. Theorem 2. Let \[\sum = \{ \mathcal{M}\} \] be satisfying J1-'.i.c,where J1 is \[\sum \]-radical of R}, and \[\bar \sum = \{ \bar \mathcal{M}\} ,\bar \mathcal{M} = \mathcal{M}/{J_1},\mathcal{M} \in \sum ,\bar \hat \sum = \{ \bar \hat \mathcal{M}\} ,\hat \mathcal{M} \in \hat \sum ,\bar \hat \mathcal{M} = \hat \mathcal{M}/{J_1}\] then the \[{\bar \sum }\]-radical of \[\bar R = R/{J_1}\] is \[{\bar 0}\]. Definition 5. Let \[\sum = \{ \mathcal{M}\} \] be satisfying J1-l.i.c. and \[\hat \sum = \{ \hat \mathcal{M}\} \], then R is called a basic ring if and only if there exists an element \[{\hat \mathcal{M}}\] of such that \[\hat \mathcal{M}:R = 0\]. Let \[\beta \] be an ideal of R, if \[\beta = \hat \mathcal{M}\]\[:R\], \[\hat \mathcal{M} \in \hat \sum \],then \[\beta \] is called a basic ideal of R. Theorem 3. The \[\sum \]-rdical of R is the intersection of all basic ideals of R. Theorem 4. Any \[\sum \]-semisimple ring is isomorphic to a subdirect sum of basic rings. Theorem 5. Let R be an associative ring. Suppose that the set \[\sum \] includes only one element R, then the \[\sum \]-radieal of R, the \[\sum \]-semisimfple and the basic rings become the Jacobson radical, the Jacobson semisimple and the primitive rings respectively. Definition 6. An element \[m \in \mathfrak{M}\] is called strictly cyclic if \[m \in mR\]. \[\mathfrak{M}\] is called special if there exists a subset M of \[\mathfrak{M}\] such that every element \[m \in M\] is strictly cyclic and 0:\[\mathfrak{M} = \mathop \cap \limits_{m \in M} 0:m\] Definition 7. A module \[\mathfrak{M}\] is called a special dense module if and only if (i)\[\mathfrak{M}\] is special, (ii) \[\mathfrak{M}\] is a F-space as stated in [1] ,(\[\mathfrak{M}\]) suppose that\[{u_{{i_1}}},{u_{{i_2}}},...,{u_{{i_n}}}\] be arbitrary finite F-independent elements and \[{u_{{i_1}}}r \ne 0,{u_{{i_j}}} = 0,j \ne 1\] for an element \[r \in R\], then there exists an element \[t \in R\] such that .\[{u_{{i_1}}}tR = \mathfrak{M},{u_{{i_j}}} = 0,j \ne 1\]. Let S be the set of all free elements of \[\mathfrak{M}\] as stated in [1]. It is clear that S is a strictly cyclic set and \[\mathfrak{M}\] is a special module. Now put I to be the class of all speciall dense modules with M = S, Denote \[{\Lambda _s} = \{ {\mathcal{M}_m}\} \] where =\[{\mathcal{M}_m} = 0:m,m \in S\], and \[\sum = \{ \mathcal{M}|\mathcal{M} \in {\Lambda _s},s \subset \mathfrak{M} \in I\} \]; \[{\hat \sum }\] as stated before. Then we can show that \[{J^*} = \mathop \cap \limits_{\mathcal{M} \in \sum } \mathcal{M} = \mathop \cap \limits_{\hat \mathcal{M} \in \hat \sum } \hat \mathcal{M}\] is a \[\sum \] -radical and \[{J^*} \subset J\], where J is Jacobson radical. Definition 8. The above stated \[\sum \]-radical \[{J^*}\] will be called the quasi Jacobson radical. A ring R is Called quasi Jacobson semisimple ring if and only if the quasi Jacobson radical \[{J^*}\] = 0. Theorem 6. Let R be a quasi Jacobson semisimple ring, then R is isomorphic to a subdirect sum of quasi primitive rings.  相似文献   

7.
设$\mathcal{A}$是一个包含非平凡投影的单位素*-代数.本文证明了一个映射$\Phi:\mathcal{A}\rightarrow\mathcal{A}$满足对任意$A,B,C\in\mathcal{A}$有$\Phi([A,B]_{\diamond}\circC)=[\Phi(A),B]_{\diamond}\circC+[A,\Phi(B)]_{\diamond}\circC+[A,B]_{\diamond}\circ\Phi(C)$当且仅当$\Phi$是一个可加的*-导子, 其中$A\circ B=A^{*}B+B^{*}A$和$[A,B]_{\diamond}=A^{*}B-B^{*}A$.  相似文献   

8.
研究了系数在模李超代数~$W(m,3,\underline{1})$ 上的~$\frak{gl}(2,\mathbb{F})$ 的一维上同调, 其中~$\mathbb{F}$ 是一个素特征的代数闭域且~$\frak{gl}(2,\mathbb{F})$ 是系数在~$\mathbb{F}$ 上的~$2\times 2$ 阶矩阵李代数. 计算出所有~$\frak{gl}(2,\mathbb{F})$ 到模李超代数~$W(m,3,\underline{1})$ 的子模的导子和内导子. 从而一维上同调~$\textrm{H}^{1}(\frak{gl}(2,\mathbb{F}),W(m,3,\underline{1}))$ 可以完全用矩阵的形式表示.  相似文献   

9.
设$\mathcal{A}$ 是一个Abel范畴,且 $(\mathcal{X}, \mathcal{Z},\mathcal{Y})$ 是一个完全遗传余挠三元组.介绍 $\mathcal{A}$ 的 $n$-$\mathcal{Y}$-余倾斜子范畴的定义,并给出 $n$-$\mathcal{Y}$-余倾斜子范畴的一个刻画,类似于 $n$-余倾斜模的 Bazzoni 刻画.作为应用,证明了在一个几乎 Gorenstein 环 $R$ 上, 如果 $\mathcal{GP}$ 是 $n$-$\mathcal{GI}$-余倾斜的, 那么 $R$ 是一个 $n$-Gorenstein 环, 其中 $\mathcal{GP}$ 表示 Gorenstein 投射 $R$-模组成的子范畴且 $\mathcal{GI}$ 表示 Gorenstein 内射 $R$-模组成的子范畴. 进而, 研究 任意环$R$上的$n$-余星子范畴, 以及关于余挠三元组 $(\mathcal{P}, R$-Mod, $\mathcal{I})$ 的 $n$-$\mathcal{I}$-子范畴与 $n$-余星子范畴之间的关系, 其中 $\mathcal{P}$ 表示投射左 $R$-模组成的子范畴且 $\mathcal{I}$ 表示内射左 $R$-模组成的子范畴.  相似文献   

10.
设$\mathcal{A}$, $\mathcal{B}$是两个因子且$\dim\mathcal{A}>4$.本文证明了双射$\phi:\mathcal{A}\rightarrow\mathcal{B}$ 满足对所有的$A,B,C\in\mathcal A$有$\phi([A,B]\bullet C)=[\phi(A),\phi(B)]\bullet\phi(C)$当且仅当$\phi$是线性*-同构, 共轭线性*- 同构,负的线性*-同构, 负的共轭线性*-同构.  相似文献   

11.
考虑如下的极值问题: $$ \inf_{f\in \mathcal{F}}\iint_{Q_{1}}\varphi(K(z,f))\lambda(x)|\rmd z|^{2}, $$ 其中$\mathcal{F}$ 是从矩形$Q_1$ 到矩形$Q_2$ 并保持端点且具有有限线性偏差 $K(z,f)$的所有同胚映射$f$的集合, $\varphi$ 是正的严格凸的递增函数, 而$\lambda(x)$ 是正的加权函数. 作者在文``{\it Sci China Math}, 2016, 59(4):673--686''中证明了当 $\varphi''$ 无界时, 上述极值问题存在唯一的极值映射$f_{0}(z)=u(x)+\rmi y$. 本文考虑$\varphi''$ 有界的情形, 得到如下结果: 当$Ll$ 时, 极值映射可能不存在. 借助于 Martin 和 Jordens 的方法, 构造了一族最小序列使得其极限达到最小值.  相似文献   

12.
令$H$和$K$是无限维复Hilbert空间, $\mathcal{A},\mathcal{B}$分别是$H$和$K$上的因子von Neumann代数.结果表明每一个从$\mathcal{A}$到$\mathcal{B}$完全保Jordan1-$*$-零积的满射都是线性$*$-同构或者共轭线性$*$-同构的非零常数倍.  相似文献   

13.
在这篇论文中,我们研究了$\mathcal{A}$-Gorenstein投射模类和$\mathcal{A}$的左正交模类之间的关系,以及$\mathcal{A}$-Gorenstein内射模类和A的右正交模类之间的关系.我们得到了$\mathcal{A}$-Gorenstein投射模和$\mathcal{A}$-Gorenstein内射模的一些函子刻画.以完备对偶对为工具,我们讨论了$\mathcal{A}$-Gorenstein投射模和$\mathcal{B}$-Gorenstein平坦模之间的关系,并推广了一些已知结论.  相似文献   

14.
一个有向多重图D的跳图$J(D)$是一个顶点集为$D$的弧集,其中$(a,b)$是$J(D)$的一条弧当且仅当存在有向多重图$D$中的顶点$u_1$, $v_1$, $u_2$, $v_2$,使得$a=(u_1,v_1)$, $b=(u_2,v_2)$ 并且$v_1\neq u_2$.本文刻画了有向多重图类$\mathcal{H}_1$和$\mathcal{H}_2$,并证明了一个有向多重图$D$的跳图$J(D)$是强连通的当且仅当$D\not\in \mathcal{H}_1$.特别地, $J(D)$是弱连通的当且仅当$D\not\in \mathcal{H}_2$.进一步, 得到以下结果: (i) 存在有向多重图类$\mathcal{D}$使得有向多重图$D$的强连通跳图$J(D)$是强迹连通的当且仅当$D\not\in\mathcal{D}$. (ii) 每一个有向多重图$D$的强连通跳图$J(D)$是弱迹连通的,因此是超欧拉的. (iii) 每一个有向多重图D的弱连通跳图$J(D)$含有生成迹.  相似文献   

15.
假设$\mathcal A$是一个含单位元$e$的交换$C^*$-代数, $\mathcal M$是一个满的Hilbert $\mathcal A$-模. 令End_{$\mathcal A$}($\mathcal M$)表示$\mathcal M$上的全体有界$\mathcal A$线性算子构成的代数, $\mathcal M''$M表示$\mathcal M$到$\mathcal A$的全体有界$\mathcal A$线性映射构成的集合. 在本文中, 我们证明了如果存在$\mathcal M$中元素$x_0$和$\mathcal M''$中的元素$f_0$满足$f_0(x_0)=e$, 那么End_{$\mathcal A$}($\mathcal M$)上的$\mathcal A$-线性Lie三重导子都是标准的.  相似文献   

16.
设$R$是一个有单位元的环, $\mathcal{C}(R)$是右$R$模范畴. 在本文中, 我们介绍了semi-McCoy模的概念, 由此得到 $\mathcal{C}(R)$ 在满同态的核下封闭, 在一定条件下关于短正合列扩张以及直和也是封闭的. 我们同时也给出$\mathcal{C}(R[x])$和 $\mathcal{C}(R[x;x^{-1}])$子范畴的一些性质.  相似文献   

17.
图$G$的$(\mathcal{O}_{k_1}, \mathcal{O}_{k_2})$-划分是将$V(G)$划分成两个非空子集$V_{1}$和$V_{2}$, 使得$G[V_{1}]$和$G[V_{2}]$分别是分支的阶数至多$k_1$和$k_2$的图.在本文中,我们考虑了有围长限制的平面图的点集划分问题,使得每个部分导出一个具有有界大小分支的图.我们证明了每一个围长至少为6并且$i$-圈不与$j$-圈相交的平面图允许$(\mathcal{O}_{2}$, $\mathcal{O}_{3})$-划分,其中$i\in\{6,7,8\}$和$j\in\{6,7,8,9\}$.  相似文献   

18.
设 $k, m$ 是两个正整数, $a\ ( \ne 0)$是有穷复数. $\mathcal{F}$ 是区域 $D$ 内的一族亚纯函数, $f\in\mathcal{F}$ 的零点重数至少为 $k$, $P$ 是多项式,次数或者 ${\rm deg}\, P\geq3$ 或者 ${\rm deg}\, P=2$ 且 $P$ 只有一个不同的零点.若对于 $\mathcal{F}$ 中的任意两个函数 $f$ 和 $g$, $P(f){({f^{(k)}})^m}$ 与 $P(g){({g^{(k)}})^m}$ 在 $D$ 内 IM 分担 $a$, 则 $\mathcal{F}$ 在 $D$ 内正规.  相似文献   

19.
本文研究了单位圆盘上从$L^{\infty}(\mathbb{D})$空间到Bloch型空间 $\mathcal{B}_\alpha$ 一类奇异积分算子$Q_\alpha, \alpha>0$的范数, 该算子可以看成投影算子$P$ 的推广,定义如下$$Q_\alpha f(z)=\alpha \int_{\mathbb{D}}\frac{f(w)}{(1-z\bar{w})^{\alpha+1}}\d A(w),$$ 同时我们也得到了该算子从 $C(\overline{\mathbb{D}})$空间到小Bloch型空间$\mathcal{B}_{\alpha,0}$上的范数.  相似文献   

20.
本文中, 我们主要刻画了Toeplitz算子$T=M_{z^k}+M^*_{z^l}$的约化子空间, 其中 $k_i, l_i$ ($i=1,2$) 均是正整数, $k=(k_1,k_2), l=(l_1,l_2)$ 且 $k\neq l$, $M_{z^k}$, $M_{z^l}$ 是双圆盘加权Hardy空间$\mathcal{H}_\omega^2(\mathbb{D}^2)$上的乘法算子. 对权系数 $\omega$ 适当限制, 我们证明了由 $z^m$ 生成的 $T$ 的约化子空间均是极小的. 特别地, Bergman 空间和加权 Dirichlet 空间 $\mathcal{D}_\delta(\mathbb{D}^2)(\delta>0)$ 均是满足该限制条件的加权Hardy空间. 作为应用, 我们刻画了 $\mathcal{D}_\delta(\mathbb{D}^2)(\delta>0)$ 上 Toeplitz 算子 $T_{z^k+\bar{z}^l}$ 的约化子空间, 该结论是对双圆盘Bergman 空间上相关结论的推广.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号