首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glass-like carbon (GC) tiles were electrochemically oxidized in 1 mol·dm?3 H2SO4 solution at a potential of 2.3 V/SCE. The surfaces of the oxidized samples were examined by scanning electron microscopy (SEM). The solid oxidation products were studied by derivatographic (TG, DTG and DTA) and elemental analyses. The solid products of electrochemical oxidation of GC, with the general formula C8O4.2H2.3 were thermolabile and revealed properties similar to those of graphite oxide. They are hydrophylic and their thermal decomposition proceeds in three steps: (i) evaporation of-chemisorbed water (320–400 K), (ii) exothermic decomposition of graphite oxide (370–430 K), and (iii) gradual decomposition of the oxidation products (>430 K).  相似文献   

2.
[C3N2H5]6[Bi4Br18] has been synthesized and characterized by the X-ray (at 293 and 110 K), calorimetric, dilatometric and dielectric measurements. At room temperature it crystallizes in the monoclinic space group, C2/m. A crystal structure consists of disordered imidazolium cations and ordered discrete tetramers of [Bi4Br18]6-. This compound reveals a rich polymorphism in a solid state. It undergoes three solid–solid phase transitions: from phase I to II at 426/423 K (heating–cooling), II→III at 227 K and III→IV at 219.5/219 K. A clear dielectric relaxation process is found in the room temperature phase II. Infrared studies of the polycrystalline [C3N2H5]6[Bi4Br18] showed that the ν(N–H), δ(ring) and δ(C–H) modes of the imidazolium cations appeared to be very sensitive to the IV→III phase transition. 1H NMR measurements confirmed a key role of the imidazolium cations in the phase transitions mechanisms at low temperatures.  相似文献   

3.
Zhang S  Zhou S  Li H  Li L 《Inorganic chemistry》2008,47(17):7863-7867
The chemical bond properties, lattice energies, linear expansion coefficients, and mechanical properties of ReVO 4 (Re = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sc, Y) are investigated systematically by the dielectric chemical bond theory. The calculated results show that the covalencies of Re-O bonds are increasing slightly from La to Lu and that the covalencies of V-O bonds in crystals are decreasing slightly from La to Lu. The linear expansion coefficients decrease progressively from LaVO 4 to LuVO 4; on the contrary, the bulk moduli increase progressively. Our calculated results are in good agreement with some experimental values for linear expansion coefficients and bulk moduli.  相似文献   

4.
Polyimide films with thicknesses ranging from 6 μm to 80 μm were prepared with a solvent casting method to explore film thickness effects on the in-plane thermal expansion coefficient (CTE). In the case of polyimide films composed of bulky and flexible molecular units, CTE is consistent regardless of film thickness. In contrast, films with rigid and planar molecular structure show CTE increase according to the increase of film thickness up to 40–50 μm, which then plateau for thicker films. It is apparent that the film thickness dependent thermal expansion originates from complex effects of molecular orientation, charge transfer complex formation, and crystal formation as a function of film thicknesses, through characterization on UV–Vis absorption, crystalline structure, glass transition behavior, and optical retardation. These results provide insight into the design of polymer structures for flexible display substrates that require appropriate CTE values.  相似文献   

5.
the anomalous part of the specific heat capacity and hte isobaric thermal expansion coefficient of nematic liquid crystals above the transition point are calculated on the basis of the continuum fluctuation theory of de Gennes.  相似文献   

6.
Structural (at room temperature) and dielectric and thermal properties of TlH2AsO4 have been studied as functions of temperature to understand the existence of its reported phase transition. The space group and cell parameters of the compound were determined. The crystal structure was determined by Patterson and Fourier difference methods and refined by the full-matrix least-squares technique. The structure can be explained in terms of zig-zag chains of H-bonds running along thec-axis. Careful studies on dielectric and thermal properties of the substance do not suggest any ferroelectric phase transitions in it.  相似文献   

7.
Thin films of poly(methylsilsesquioxane) (PMSSQ) are candidates for use as interdielectric layers in advanced semiconductor devices with multilayer structures. We prepared thin films of PMSSQ with thicknesses in the range 25.0-1151.0 nm by spin-casting its soluble precursor onto Si and GaAs substrates with native oxide layers and then drying and curing the films under a nitrogen atmosphere at temperatures in the range 250-400 degrees C. The out-of-plane thermal expansion coefficient alpha(perpendicular) of each film was measured over the temperature range 25-200 degrees C using spectroscopic ellipsometry and synchrotron X-ray reflectivity, while the in-plane thermal expansion coefficient alpha(parallel) of each film was determined over the temperature range 25-400 degrees C by residual stress analysis. PMSSQ films cured at higher temperatures exhibited reduced thermal expansion, which is attributed to the denser molecular packing and higher degree of cross-linking that arises at higher temperatures. Surprisingly however, all the PMSSQ films were found to exhibit very strong anisotropic thermal expansion; alpha(perpendicular) and alpha(parallel) of the films were in the ranges 140-329 ppm/ degrees C and 12-29 ppm/ degrees C respectively, depending on the curing temperature. This is the first time that cured PMSSQ thin films have been shown to exhibit anisotropic thermal expansion behavior. This anisotropic thermal expansion of the PMSSQ thin films might be due to the anisotropy of cross-link density in the films, which arises because of a combination of factors: the preferential orientation of methyl groups toward the upper film surface and the preferential network formation in the film plane that occurs during curing of the confined film. In addition, the film electron densities were determined using synchrotron X-ray reflectivity measurements and the film biaxial moduli were obtained using residual stress analysis.  相似文献   

8.
The linear thermal-expansion coefficients (α) of styrene–sodium methacrylate copolymers were studied as a function of the concentration of sodium methacrylate comonomer. Over the concentration range studied (0.61–9.0 mole % sodium methacrylate), the expansion coefficients of the glass αg and of the liquid αl were independent of ion concentration. Average values for these quantities were αg = (6.9 ± 0.9) × 10?5 deg?1 and αl = (16.0 ± 2.0) × 10?5 deg?1. When samples of concentrations above 6 mole % were heated from room temperature, a low value for the liquid-expansion coefficient αl was observed in the first runs. This quantity had an average value of (12.0 ± 1.9) × 10?5 deg?1. Heating of the 6.5 mole % sample from room temperature followed by cycling from the glass transition temperature Tg to successively higher temperatures resulted in a gradual increase in liquid-expansion coefficient. The results are consistent with the hypothesis of the existence of various types of ionic aggregates in these polymers, with the state of aggregation changing at approximately (5–6) % of ions. Experimental Tg values, which increase with ion concentration over the entire range, are consistent with the results of previous studies.  相似文献   

9.
ABSTRACT

Zinc oxide (ZnO) nanoparticles of spherical symmetry (average size of ≈ 20 nm) have been synthesised via a non-aqueous lyotropic liquid crystalline (LLC) templating process. Lyotropic liquid crystalline nanocolloids are prepared via dispersing 0.05, 0.1 and 0.5 wt.% ZnO nanoparticles in non-aqueous lyotropic phase. No structural phase change has been seen with the doping of nanoparticles as stable lamellar phases are observed in all the cases. Stability of the lamellar structure and orientation of the ZnO nanoparticles in the liquid crystalline matrix may be attributed to the interfacial surface charge interactions. A significant increase and pronounced dispersion in dielectric permittivity of the ZnO/LLC nanocolloids could be the result of parallel coupling among guest/host, higher dipole- moment of the ZnO nanoparticles and Maxwell-Wagner polarisation. The variation of relaxation parameters has also been discussed and correlated with the dielectric and structural parameters. ZnO/lyotropic nanocolloids devices exhibit dc conductivity of the order of 10?5S/m owing to the increase in the number of ions (of the order of 1019m?3) in the doped systems. Nanocolloids exhibits, the refractive index of range 1.40 to 1.45 and the wide bandgap of the range 4.1–4.5 eV.  相似文献   

10.
Novel pyridinium salts [N‐(α‐phenylbenzyl)‐, N‐(1‐naphthylmethyl)‐, or N‐cinnamyl p‐ or o‐cyanopyridinium hexafluoroantimonates] were synthesized by the reaction of p‐ or o‐cyanopyridine and the corresponding bromides followed by anion exchange with KSbF6. These pyridinium salts polymerized epoxy monomers at lower temperatures than previously reported for N‐benzyl‐2‐cyanopyridinium hexafluoroantimonate. The o‐substituted pyridinium salts showed higher activity than the p‐substituted ones, and the crosslinked epoxy polymers cured with these initiators showed higher glass‐transition temperatures. These pyridinium salts photoinitiated radical polymerization as well as cationic polymerization. The photopolymerization was accelerated by the addition of aromatic ketones as photosensitizers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1037–1046, 2002  相似文献   

11.
High‐performance insulating materials have been increasingly demanded by many cutting‐edge fields. A new kind of high‐performance composites with high thermal conductivity, low coefficient of thermal expansion (CTE), and low dielectric loss was successfully developed, consisting of hexagonal boron nitride (hBN) and 2,2′‐diallylbisphenol A (DBA)‐modified 4,4′‐bismaleimidodiphenylmethane (BDM) resin. The effects of hBN and its content on the integrated properties, including curing behavior of uncured system, the CTE, thermal conductivity, dielectric properties, and thermal resistance of cured composites, are systematically investigated and discussed. Results show that there are amino groups on the surface of hBN, which supply desirable interfacial adhesion between hBN and BDM/DBA resin and a good dispersion of hBN in the resin. With the increase of the hBN content, the thermal conductivity increases linearly, whereas the CTE value decreases linearly; in addition, dielectric loss gradually decreases and becomes more stable over the whole frequency from 10 to 109 Hz. In the case of the composite with 35 wt% hBN, its thermal conductivity, CTE in glassy state, and dielectric loss are about 3.3, 0.63, and 0.5 times of the corresponding value of BDM/DBA resin, respectively. These attractive integrated properties suggest that hBN/BDM/DBA composites are high‐performance insulating materials, which show great potential in applications, especially for electronics and aerospace industries. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
13.
A range of new pyridinium bromides was synthesized by the quaternization of different substituted pyridines with a group containing a biphenyl core and alkyl chains of differing lengths. The phase behaviour of the pyridinium bromides was studied by differential scanning calorimetry, polarizing optical microscopy and powder X-ray diffraction. It is shown that pyridinium moieties, linked to a rod-like biphenyl core via an alkyl spacer, can form ionic liquid crystals. Unsubstituted pyridinium groups promote mesomorphism. Liquid crystalline phases are formed only from 2- and 4-ethyl substituted pyridinium groups with sufficiently long alkyl terminal chains and spacers; i.e. decyl chains on both sides of the biphenyl core. Both the substitution pattern at the pyridinium group and the alkyl chain length have an influence on the polymorphism of the smectic phases. 3,5-Dimethyl substitution hinders mesophase formation.  相似文献   

14.
A range of new pyridinium bromides was synthesized by the quaternization of different substituted pyridines with a group containing a biphenyl core and alkyl chains of differing lengths. The phase behaviour of the pyridinium bromides was studied by differential scanning calorimetry, polarizing optical microscopy and powder X-ray diffraction. It is shown that pyridinium moieties, linked to a rod-like biphenyl core via an alkyl spacer, can form ionic liquid crystals. Unsubstituted pyridinium groups promote mesomorphism. Liquid crystalline phases are formed only from 2- and 4-ethyl substituted pyridinium groups with sufficiently long alkyl terminal chains and spacers; i.e. decyl chains on both sides of the biphenyl core. Both the substitution pattern at the pyridinium group and the alkyl chain length have an influence on the polymorphism of the smectic phases. 3,5-Dimethyl substitution hinders mesophase formation.  相似文献   

15.
Measurements of the thermal expansion coefficients (TECs) of chitin crystals in the lateral direction are reported. We investigated highly crystalline α chitin from the Paralithodes tendon and an anhydrous form of β chitin from a Lamellibrachia tube from room temperature to 250 °C, using X‐ray diffraction at selected temperatures in the heating process. For α chitin, the TECs of the a and b axes were αa = 6.0 × 10−5 °C−1 and αb = 5.7 × 10−5 °C−1, indicating an isotropic thermal expansion in the lateral direction. However, the anhydrous β chitin exhibited an anisotropic thermal expansion in the lateral direction. The TEC of the a axis was constant at αa = 4.0 × 10−5 °C−1, but the TEC of the b axis increased linearly from room temperature to 250 °C, with αb = 3.0–14.6 × 10−5 °C−1. These differences in the lateral thermal expansion behaviors of the α chitin and the anhydrous β chitin are due to their different intermolecular hydrogen bonding systems. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 168–174, 2001  相似文献   

16.
Experimental results for a variety of molecules have shown that their bond lengths expand appreciably when the molecules are heated, as expected from the asymmetric Morse-like potentials characterizing the bonds. However, in a series of papers on structures determined by gas-phase electron diffraction, Giricheva et al. claimed that, for very hot MX3 molecules, effects of out-of-plane vibrations cancel the thermal expansion of the M–X bonds. This is incorrect. Although the computations to support their claim were correct as far as they went, the authors neglected the effects of asymmetric vibrational modes and centrifugal stretches of the bonds. In the present report, we show that quantum chemical computations for LaI3 reveal the crucial roles played by the terms neglected by Giricheva et al., which terms are responsible for thermal bond stretches of approximately 0.023 Å at 1142 K. In addition, because the iodine atoms in LaI3 are further apart in the mean structure than the sum of their Pauling van der Waals radii, the geminal nonbonded interactions are attractive. This accounts for the fact that the Morse asymmetry constant for the symmetric stretch mode is smaller than that for the asymmetric stretch. It also helps to explain the very large amplitude of the out-of-plane puckering mode, which tends to decrease the La–I bond length during the puckering trajectory.  相似文献   

17.
Negative thermal expansion in rare earth molybdates   总被引:4,自引:0,他引:4  
Negative thermal expansion in rare earth molybdates of A2Mo3O12 family (A=Y, Er, Yb and Lu) is measured by high temperature X-ray diffraction and dilatometry. Rare earth molybdates which are isostructural with the corresponding rare earth tungstates, also exhibit this phenomena attributed to transverse acoustic vibrations. The rare earth molybdates of A2M3O12 family with an orthorhombic structure (A=Y, Er, Yb and Lu) are highly hygroscopic and exhibit negative thermal expansion after the complete removal of water molecules. Axial thermal expansion co-efficient calculated from high temperature X-ray diffraction (RT-1073K) shows rare earth size effect. As the ‘A’ cation decreases in size, the thermal expansion co-efficient along ‘b’ axis and the linear thermal expansion co-efficient become less negative. The thermal expansion behaviour of the tetragonal La2Mo3O12 is also reported to demonstrate the effect of crystal structure.  相似文献   

18.
Measurements on the thermal expansivity α and α? (along and normal to the draw direction, respectively) have been carried out for a series of oriented polymers with widely different crystallinities (0.36–0.81) and draw ratios (1–20) and over large temperature ranges covering the major amorphous transitions in each case. While α? increases with temperature, α tends to decrease sharply above the transition temperature. For highly crystalline polymers, α decreases to values typical of polymer crystals (?1 × 10?5 K?1) and this can be attributed to the constraining effect of the crystalline bridges connecting the crystalline blocks. However, for polymers of lower crystallinity, α may become an order of magnitude more negative and this remarkable phenomenon is attributed to the rubber–elastic contraction of taut tie-moleucles. Since taut tie-molecules and bridges have drastically different effects on α at high temperatures, this allows a rough determination of their relative fractions.  相似文献   

19.
The nonlinear dielectric response due to the application of a strong dc bias electric field superimposed on a weak ac electric field is considered in the context of the anomalous diffusion (subdiffusion). A perturbation procedure is used to derive analytical expressions for the first three harmonic components of the electric polarization of an assembly of both polar and anisotropically polarizable symmetric-top molecules. To accomplish that, an infinite hierarchy of multiterm (21) differential-recurrence equations of noninteger order for the moments is established and solved for the stationary regime. The results so obtained are illustrated in the form of Argand diagrams and three-dimensional relaxation spectra for the complex nonlinear dielectric increment extracted from the first harmonic component of the electric susceptibility. These plots show the role and importance played by the fractional exponent and the parameter P measuring the influence of the dipole moment over the permanent one.  相似文献   

20.
The CLST/PTFE/5%GF composite sharply decreases the CTE in both X&Y and Z directions, obtained a promising microwave dielectric material for microwave communication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号