首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 601 毫秒
1.
Fluorescent dyes emitting red light are frequently used in conventional and super‐resolution microscopy of biological samples, although the variety of the useful dyes is limited. We describe the synthesis of rhodamine‐based fluorescent dyes with absorption and emission maxima in the range of 621–637 and 644–660 nm, respectively and demonstrate their high performance in confocal and stimulated emission depletion (STED) microscopy. New dyes were prepared by means of reliable chemical transformations applied to a rhodamine scaffold with three variable positions. They feature polarity, water solubility, variable net charges, improved stabilities of N‐hydroxysuccinimidyl (NHS) esters, as well as large fluorescence quantum yields in dye solutions and antibody conjugates. The photophysical and imaging properties of dyes containing three different polar groups, namely primary phosphate, sulfonic acid (in two different positions), and hydroxyl were compared. A dye with two primary phosphate groups was explored as a valuable alternative to dyes with “classical” sulfonic acid groups. Due to the increased net charge of the phosphorylated dye (q=?4 at pH 8), it demonstrated a far better electrophoretic mobility compared with analogues with two sulfonic acid groups (q=?2). As an example, one fluorescent dye was designed to be especially convenient for practical use. It is characterized by sufficiently high chemical stability of the NHS ester, its simple isolation, handling, and solubility in aqueous buffers, as well as in organic solvents. All these features, accompanied by a zero net charge in conjugates, were accomplished by the introduction of hydrophilic groups of two types: two hydroxyl groups and one sulfonic acid residue.  相似文献   

2.
Two α-septithiophenes substituted at the third position of the middle ring with polyethyleneglycol of different molecular weights (PEG 1000 and PEG 2000) were synthesized using Suzuki condensation. Their structural characterization was performed by 1H NMR and FT-IR. The thermal behavior of the new synthesized oligothiophenes was investigated by differential scanning calorimetry (DSC) and thermogravimetrical (TGA) analysis. Photophysical properties in solutions were evaluated by UV-vis and fluorescence measurements using different solvents. The amphiphilic nature of the synthesized oligothiophenes and the presence of the PEG side chains induced self-dispersibility in water and the possibility of fluorescent nanoparticles forming by self-assembling. The size of nanoparticles in water was assessed by DLS and AFM investigations.  相似文献   

3.
Retention properties of a nanofiltration ceramic membrane were investigated with single polyethyleneglycol (PEG) solutions and mixed PEG/inorganic electrolyte solutions. The rejection coefficient of PEGs was found to decrease in the presence of ions. It was shown that the effect of ions on the retention of neutral solutes increases with the electrolyte concentration. This phenomenon was ascribed to the partial dehydration of PEG molecules induced by the surrounding ions. This argument was confirmed by using various electrolytes (KCl, LiCl and MgCl2). It was found that the lowering of the PEG rejection coefficients follows the Hofmeister series, i.e. Mg2+ > Li+ > K+. Experimental data were used to compute the resulting decrease in the Stokes radius of PEG molecules in the presence of the various electrolytes.  相似文献   

4.
The effects of the oxidative reaction on the ionic permeabilities through polypeptide membranes containing thiol groups in the side chains were investigated. Membranes were derived from poly(glutamyl-cysteine) (PGC) containing 12% (in mol %) of ? SH groups in the side chains, and from poly(L-cysteine) (PlCys) containing 26% of thiol groups in the side chains, respectively. On the basis of the polarographic analysis, it can be estimated that more than 80% of ? SH groups in the membranes could be oxidized by using 10 mM solution of iodine. The membrane potentials across the PGC membrane were increased by the iodine oxidation, indicating that ? SH groups of PGC were converted to highly dissociable groups, i.e., sulfonic acid derivatives. The decrease in the ionic permeabilities through the PGC membrane by the oxidation, therefore, was attributed to the decrease in ionic solubility into the membrane owing to the increase in fixed charge density of the membrane (Donnan exclusion effect). On the other hand, no influence of the oxidation on the membrane potentials of the PCys membrane suggests the possibility of oxidative S-S cross linking in the membrane. The oxidation-induced permeability decrease of the PCys membrane could be explained in terms of the decrease in ionic diffusibility associated with the formation of the side chain cross linkings between ? SH groups in the membrane.  相似文献   

5.
IntroductionAs is known,textile wastewater is a troubleindustrial wastewater due to its environment pollu-tion caused by its deep color,huge amounts,highCODcrand BOD5,as well as itsdifficultdegradationby biodegradation[1— 3 ] .Fenton reagent[4— 6] has a high redox potential,2 .8V. Recently,the Fenton reagent used as anoxidant to treat toxic organic wastewater such aswood glue,lead trinitroresorcinate and textilewastewater has been reported.Although hydroxylradical can be generated by a c…  相似文献   

6.
Terpolymerization of aniline, o-anisidine and o-toluidine was carried out by electrochemical and interfacial chemical polymerization. All homopolymers and terpolymer thin films have been synthesized through electropolymerization at room temperature in aqueous solutions containing 0.5 M of organic sulfonic acid, such as p-toluene sulfonic acid, methane sulfonic acid, sulfosalicylic acid, dodecylbenzene sulfonic acid, and 0.1 M of aniline, o-anisidine and o-toluidine monomers, using cyclic voltammetry method, applying a sequential linear potential scan at a rate of 25 mV s?1 between ?0.1 and 0.9 V. The electrochemical terpolymerization has been performed at various mole ratios of monomers. Nanoparticles obtained from conjugation of homo- and terpolymer with organic sulfonic acids, were prepared by a chemical oxidation via interfacial chemical polymerization. SEM micrographs, FTIR spectra and conductivity measurements using four-probe method were applied for the characterization of the products. Terpolymer was characterized by higher conductivity than poly-o-toluidine and lesser than polyaniline and poly-o-anisidine. The solubility of terpolymers was dependent on the monomers mole ratio.  相似文献   

7.
Two new azo dyes of alpha-isoxazolylazo-beta-diketones and their Ni(II) and Cu(II) complexes with blue-violet light wavelength were synthesized using a coupling component, different diazo components and metal (II) ions (Ni2+ and Cu2+). Based on the elemental analysis, MS spectra and FT-IR spectral analyses, azo dyes were unequivocally shown to exist as hydrazoketo and azoenol forms which were respectively obtained from the solution forms and from the solid forms. The action of sodium methoxide (NaOMe) on azo dyes in solutions converts hydrazoketo form into azoenol form, so azo dyes are coordinated with metal (II) ions as co-ligands in the azoenol forms. The solubility of all the compounds in common organic solvents such as 2,2,3,3-tetrafluoro-1-propanol (TFP) or chloroform (CHCl3) and absorption properties of spin-coating thin films were measured. The difference of absorption maxima from the complexes to their ligands was discussed. In addition, the TG analysis of the complexes was also determined, and their thermal stability was evaluated. It is found that these new metal (II) complexes had potential application for high-density digital versatile disc-recordable (HD-DVD-R) system due to their good solubility in organic solvents, reasonable and controllable absorption spectra in blue-violet light region and high thermal stability.  相似文献   

8.
ABSTRACT

Rheological measurements were performed on Hyaluronic acid (HA) and its derivative solutions to evaluate steady flow viscosity and dynamics response with the aim to correlate the materials properties to the concentration, molecular weight and chemical structure. At low molecular weight and concentration, the HA solutions behaved as viscous liquid, whereas a soft-gel response was evident at higher molecular weight and concentration due to chains entanglement. Increasing the molecular weight was more effective than increasing concentration in promoting entanglement of molecular chains of HA. Comparing the behavior of HA solutions with that of Hyaluronic acid derivatives, it is showed that it is possible to modulate the rheological properties of HA based solutions by chemical modification preserving the bio-compatibility of the materials. The results of the rheological analysis provide a valuable tool to properly design optimal substitutes for specific biomedical application.  相似文献   

9.
We have studied theoretically the partition equilibrium of a cationic drug between an electrolyte solution and a membrane with pH-dependent fixed charges using an extended Donnan formalism. The aqueous solution within the fixed charge membrane is assumed to be in equilibrium with an external aqueous solution containing six ionic species: the cationic drug (DH(+)), the salt cations (Na(+) and Ca(2+)), the salt anion (Cl(-)), and the hydrogen and hydroxide ions. In addition to these mobile species, the membrane solution may also contain four fixed species attached to the membrane chains: strongly acid sulfonic groups (SO(3)(-)), weakly acid carboxylic groups in dissociated (COO(-)) and neutral (COOH) forms, and positively charged groups (COO...Ca(+)) resulting from Ca(2+) binding to dissociated weakly acid groups. The ionization state of the weak electrolyte groups attached to the membrane chains is analyzed as a function of the local pH, salt concentration, and drug concentration in the membrane solution, and particular attention is paid to the effects of the Ca(2+) binding to the negatively charged membrane fixed groups. The lipophilicity of the drug is simulated by the chemical partition coefficient between the membrane and external solutions giving the tendency of the drug to enter the membrane solution due to hydrophobic interactions. Comparison of the theoretical results with available experimental data allows us to explain qualitatively the effects that the pH, salt concentration, drug concentration, membrane fixed charge concentration, and Ca(2+) binding exert on the ionic drug equilibrium. The role of the interfacial (Donnan) electric potential difference between the membrane and the external solutions on this ionic drug equilibrium is emphasized throughout the paper.  相似文献   

10.
Crystalline polymers such as β-cyclodextrin (βCD) can be modified with polyethylene glycol (PEG) diglycidyl ether cross-linkers (262, 394, 500 Da). In this work, the authors show that the quantity and length of the PEG soft segments influence the solubility and malleability of the products, which are water soluble and easily converted to nitrated analogues under standard reaction conditions. Inert and nitrated derivatives containing longer PEG segments showed the ability to self-heal. The degree of cross-linking and decomposition temperatures and energies depended on the quantity and length of the soft segment. Nitrated cross-linked βCD containing longer PEG segments did not ignite following an electrostatic discharge of 4.5 J. The chemical stability of βCD/PEG binders was tested by heat flow calorimetry at 80 °C. The balanced incorporation of soft PEG and rigid βCD segments was found to improve the processability of cross-linked βCDs and desensitised their nitrated derivatives, offering new solutions for inert and energetic binders.  相似文献   

11.
Toluidine blue O (TBO) is a water‐soluble photosensitizer that has been used in photodynamic antimicrobial and anticancer treatments, but suffers from limited solubility in hydrophobic media. In an effort to incrementally increase TBO’s hydrophobicity, we describe the synthesis of hexanoic (TBOC6) and myristic (TBOC14) fatty acid derivatives of TBO formed in low to moderate percent yields by condensation with the free amine site. Covalently linking 6 and 14 carbon chains led to modifications of not only TBO’s solubility, but also its photophysical and photochemical properties. TBOC6 and TBOC14 derivatives were more soluble in organic solvents and showed hypsochromic shifts in their absorption and emission bands. The solubility in phosphate buffer solution was low for both TBOC6 and TBOC14, but unexpectedly slightly greater in the latter. Both TBOC6 and TBOC14 showed decreased triplet excited‐state lifetimes and singlet oxygen quantum yields in acetonitrile, which was attributed to heightened aggregation of these conjugates particularly at high concentrations due to the hydrophobic “tails.” While in diluted aqueous buffer solution, indirect measurements showed similar efficiency in singlet oxygen generation for TBOC14 compared to TBO. This work demonstrates a facile synthesis of fatty acid TBO derivatives leading to amphiphilic compounds with a delocalized cationic “head” group and hydrophobic “tails” for potential to accumulate into biological membranes or membrane/aqueous interfaces in PDT applications.  相似文献   

12.
Nile Red (compound A) fluoresces at about 530 nm with good quantum yields in apolar solvents. In more polar ones its fluorescence emission shows a dramatic, and potentially useful, shift to about 640 nm, but its quantum yield is significantly reduced. Further, Nile Red has a very poor solubility in aqueous media. The hypothesis tested in this paper is that Nile Red derivatives that incorporate water-solubilizing groups will tend to fluoresce with good quantum yields in aqueous media, and in the more useful wavelength range around 640 nm. Thus three Nile Red derivatives, 1-3, were prepared. Compound 1 had three hydroxyl groups more than Nile Red, but was surprisingly insoluble in aqueous media. However, the dicarboxylic acid 2 and carboxylic/sulfonic acid derivative 3 showed excellent water solubilities. Spectral data for 2 and 3 showed that they do indeed fluoresce with good quantum yields in the 640 nm region in aqueous media. These properties of compounds 2 and 3 might be useful in the development of fluorescent probes for biotechnology.  相似文献   

13.
Polyethylene glycol (PEG) chains with different lengths were covalently bonded to polypropylene membranes by means of RF plasma polymerisation of acrylic acid (pp-Aac) followed by mono-amino PEG attachment in liquid phase. Two reactor configurations were tested for the plasma deposition of ppAAc in order to obtain high retention of carboxylic groups in the deposited thin films. A best configuration was assessed evaluating the membrane surface modifications by means of water droplet adsorption time and contact angles measurements, attenuated total reflection (ATR) spectroscopy and X-ray photoelectron spectroscopy (XPS) analysis. PEG chains were covalently bonded to the best plasma modified membranes and the resulting anti-fouling properties were evaluated.  相似文献   

14.
A series of sulfonated copolyimides containing pyrimidine groups (SPIs) were synthesized by random copolymerization of 1,4,5,8‐naphthalenetetracarboxylic dianhydride (NTDA), 2‐(4‐aminophenyl)‐5‐aminopyrimidine (PAPRM), and 4,4′‐diaminodiphenyl ether‐2,2′‐disulfonic acid (ODADS). Proton exchange treatment in 1.0 M sulfuric acid solution resulted in ionic cross‐linking of the sulfonated copolymers due to the acid (sulfonic acid)‐base (pyrimidine group) interactions and the membrane with more basic PAPRM moiety could absorb sulfuric acid to favor the proton transfer. The effects of the structure of the diamines on the properties of SPI membranes were evaluated by studying the membrane parameters including water uptake, proton conductivity, water stability, and methanol permeability. The basic pyrimidine groups introduced in the main chains could effectively resist membrane swelling due to the strong interchain interactions through basic pyrimidine groups and sulfonic acid groups. Compared with the corresponding uncross‐linked copolyimides (NTDA/ODADS/ODA), the acid–base copolyimides displayed excellent water stability. The SPI membranes also exhibited improved mechanical properties and decreased methanol permeability. However, the cross‐linked membranes showed lowered proton conductivities than the uncross‐linked ones because a small part of the sulfonic acid groups had been consumed during the cross‐linking process. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
With chlorosulfonic acid as sulfonating agent, sulfonated poly(phenylene oxide) (SPPO) was prepared by homogeneous method and SPPO membranes were cast from its solutions in dimethylacetamide. The obtained membrane of SPPO was heat-treated and stretched with different forces by thermal mechanical analyzer under its glass transition temperature. In addition, the effects of stretching and heating on ion conductivity of SPPO were investigated by using Solatron phase analyzer. It was shown that the mechanical stretching of SPPO has great effect on electric properties of SPPO under proper heating treatment, and the highest conductivities achieved were increased about 10 times that of the original membranes and reached 0.0983 S cm−1. The X-ray diffraction indicated that the molecular chains of SPPO were arranged more regularly under constraint during the heat treatment, and the scanning electron microscopy demonstrated that the morphologies of the film surfaces possessed more co-continuous regions and the hydrophilic ionic sulfonic acid groups orientated at stretching direction and connected more regularly, which facilitated the exchange and transfer of hydrated proton among these hydrophilic sulfonic acid groups.  相似文献   

16.
研究了两个噻唑橙类菁染料TO-1和TO-2与核酸、蛋白质结合的光谱特性.发现染料喹啉环中氮上取代基对染料标记生物大分子的荧光特性有着很大的影响.羧基的引入,使染料TO-2与核酸结合后的荧光性能下降,但同时也提高了它与蛋白质结合的光物理性能.研究表明:在喹啉环氮上引入适当的亲水性取代基,可以使噻唑橙类菁染料的应用范围拓展到蛋白质标记领域.并初步研究了蛋白质浓度的变化对染料TO-2的荧光光谱的影响以及TO-2在不同pH值的蛋白质溶液中的荧光性质.  相似文献   

17.
Abstract

Trinitrobenzene sulfonic acid, 2,4-dinitrofluorobenzene and 2-chloro-3,5-dinitropyridine were compared in terms of properties relevant to use as precolumn derivatization labels for amino compounds. This included consideration of chemical characteristics as well as purely detector oriented behavior. Trinitrobenzene sulfonic acid appears to be superior in all respects, yielding the most detectable derivatives with minimum production of interfering by-products.  相似文献   

18.
To better understand the spatial distribution of brain functions, we need to monitor and analyze neuronal activities. Electrophysiological technique has provided an important method for the exploration of some neural circuits. However, this method cannot simultaneously detect the activities of nerve cell groups.Therefore, methods that can monitor the spatial distribution of neuronal population activity are demanded to explore brain functions. Voltage-sensitive dyes(VSDs) shift their absorption or emission optical signals in response to different membrane potentials, allowing assessing the global electrical state of neurons. Optical recording technique coupled with VSDs is a promising method to monitor the brain functions by detecting optical signal changes. This review focuses on the fast and slow responses of VSDs to membrane potential changes and optical recordings utilized in the central nervous system. In this review, we attempt to show how VSDs and optical recordings can be used to obtain brain functional monitoring at high spatial and temporal resolution. Understanding of brain functions will not only greatly improve the cognition of information transmission of complex neural network, but also provide new methods of treating brain diseases such as Parkinson's and Alzheimer's diseases.  相似文献   

19.
The influence of poly(ethylene glycol) on the partition of a charged long chain spin probe between membranes and an external phase is studied. The partition coefficient is derived from the ESR spectra. Membranes of different properties are used (egg lecithin liposomes, erythrocytes) to differentiate between the influence of the external phase and the specific properties of the membrane.The partition coefficient is decreased in an exponential manner on increasing the PEG concentration, which indicates a lowering of the thermodynamic stability of the membranes. The determination of the change in the difference of the chemical potential is dependent on the PEG concentration.The membrane destabilization induced by PEG is caused in an indirect manner by a change of the chemical potential difference as result of the changed water structure and the osmotic pressure, surface tension and hydration of the membrane. This destabilization could be connected with the high fusogenic activity of PEG.  相似文献   

20.
A series of poly(D,L-lactic-co-glycolic acid) (PLGA)/poly(ethyleneglycol) (PEG) di-block copolymers were synthesized by ring-opening polymerization of D,L-lactide and glycolide with different molecular weights of monomethoxy polyethyleneglycol (mPEG) 750, 2000 and 5000 as an initiator. The bulk properties of these co-polymers were characterized by using 1H NMR spectroscopy, gel permeation chromatography, differential scanning calorimetry (DSC). Electron spectroscopy for chemical analysis (ESCA) results, in which the blend films with the di-block copolymers showed increasing surface oxygen atomic percentage with increasing PEG chain length, indicate that PEG chain segment in the di-block copolymers is surface oriented and enriched onto the surface of the blend films. The extent of protein adsorption onto the surface of these blend films was studied, using iodine radio-labeled human serum albumin, gamma globulin and human growth hormone. The protein adsorption amount was reduced for the blend films prepared with PLGA/PEG 750 and 2000 di-block copolymers, but increased to a great extent for PLGA/PEG 5000 di-block copolymer. This is due to the increased water uptake capacity of the blend film, which absorbed more protein molecules into a swollen polymer matrix in addition to surface adsorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号