首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The concentrations of uranium and the234U/238U ratio in natural Syrian phosphates were measured by gamma- and alpha-ray spectroscopy. The234U/238U activity ratios showed that uranium in Syrian phosphate is in equilibrium under the climatic conditions. Soma anomalous observations in these ratios were explained by earlier leaching of the phosphate by water (rain or other).  相似文献   

2.
Geochemical radioanalytical studies of groundwater were performed in the valleys of Villa de Reyes and San Luis Potosi (Mexico). The experiments were designed to measure radon and uranium content and234U/238U activity ratio in groundwater samples taken from wells in these sites and at the Nuclear Center of Salazar, Mexico.222Rn content varied depending on the sample source, reaching a maximum value of 235 pCi/l; uranium concentration results were less than 1 g/1 and234U/238U activity ratios were close to equilibrium.  相似文献   

3.
The effect of sediment size, pH, temperature and conductivity on the transfer of uranium from sediment to water has been studied. The uranium concentration and the234U/238U,235U/238U activity ratios were measured in water, sediments and suspended matter sampled from Jucar River, using low level alpha-spectrometry. Distribution factors were obtained from these measurements. A more detailed sampling was done in the neighbourhood of the Cofrentes Nuclear Plant (Valencia, Spain). Total uranium activity,234U/238U activity ratio and distribution factors for234U and238U were found to vary with pH. Leaching and dilution, which depend on pH and salinity, are the probable mechanisms for these changes.  相似文献   

4.
Uranium concentration and the 234U/238U activity ratio have been measured for the Tatsunokuchi hot spring waters of Ishikawa Prefecture in Japan, collected periodically over a long period (1977-2000). The concentration of 238U varied drastically between 0.045 and 1.02 mBq/l (a factor of about 20), while the 234U concentration was almost unchanged, ranging from 2.30 to 3.07 mBq/l. Resultant 234U/238U activity ratios showed a wide range from 2.7 to 51. Equilibrium calculation by using the geochemical code showed that U for one end-member representing low uranium contents and very high 234U/238U ratios was expected to exist as UO2(CO3)2 2-. By using the U isotopic and 14C dating methods, the age of this water was roughly estimated to be in the range of 104-105 years.  相似文献   

5.
The aim of this work was to calculate the values of the 234U/238U activity ratio in natural environment (water, sediments, Baltic organisms and marine birds from various regions of the southern Baltic Sea; river waters (the Vistula and the Oder River); plants and soils collected near phosphogypsum waste heap in Wi?linka (Northern Poland) and deer-like animals from Northern Poland. On the basis of the studies it was found that the most important processes of uranium geochemical migration in the southern Baltic Sea ecosystem are the sedimentation of suspended material and the vertical diffusion from the sediments into the bottom water. Considerable values of the 234U/238U are characterized for the Vistula and Oder Rivers and its tributaries. The values of the 234U/238U activity ratio in different tissues and organs of the Baltic organisms, sea birds and wild deer are varied. Such a large variation value of obtained activity ratios indicates different behavior of uranium isotopes in the tissues and organisms of sea birds and wild animals. This value shows that uranium isotopes can be disposed at a slower or faster rate. The values of the 234U/238U activity ratio in the analyzed plants, soils and mosses collected in the vicinity of phosphogypsum dumps in Wi?linka are close to one and indicate the phosphogypsum origin of the analyzed nuclides. Uranium isotopes 234U and 238U are not present in radioactive equilibrium in the aquatic environment, which indicates that their activities are not equal. The inverse relationship is observed in the terrestrial environment, where the value of the of the 234U/238U activity ratio really oscillates around unity.  相似文献   

6.
The 234U/238U isotope ratio has been widely used as a tracer for geochemical processes in underground aquifers. Quadrupole-based inductively coupled plasma mass spectrometry (ICP-MS) equipped with a high-efficiency nebulizer and a membrane desolvator was employed for the determination of 234U/238U isotope ratios in natural water samples. The instrumental limit of detection for 234U was at the low pg L−1 level with very low sample consumption. Measurement precision (234U/238U) was 3–5% for bottled mineral water with elevated uranium concentration (>1 μg L−1). For the analysis of groundwater samples from the Almonte-Marisma underground aquifer (Huelva, Spain), uranium was stripped from stainless steel planchets that had previously been used as radiometric counting sources for alpha-particle spectrometry. Potential spectral interferences from other metals introduced during the dissolution were investigated. Matrix-matched blank solutions were needed to subtract the background on 234U due to the formation of platinum argides, and to allow for mass bias correction and background correction. The Pt appears to be an impurity present in the stainless steel, either as a minor component by itself or after extraction from the anode and a subsequent uranium electrodeposition. The 234U/238U isotope ratio data were in very good agreement with those of alpha spectrometry, while precision was improved by a factor of up to 10 and counting time was reduced down to ~20 min (10 replicate measurements).  相似文献   

7.
The uranium concentration, and234U/238U and235U/238U activity ratios were measured by alpha spectrometry of surface water from the neighbourhood of the uranium mines El Lobo and El Pedregal (Badajoz, Spain) before and after the rainy season. Changes were observed in all the three parameters studied. Leaching and dilution are the probable mechanisms for the seasonal changes in the concentration and in the234U/238U activity ratio as measured in open and dynamic systems (rivers).  相似文献   

8.
234U/238U α-activity ratios determined by α-spectrometry (AS) and those calculated from the atom ratio data using the half-life values are compared in some of the isotopic reference materials of uranium and a few other uranium samples. For α-spectrometry, electrodeposited sources were prepared and a large area passivated ion implanted (IPE) detector (450 mm2) was used for recording the α-spectra. The isotopic composition of U was determined by thermal ionisation mass spectrometry (TIMS) and the recommended half-life values of234U and238U were used to calculate the α-activity ratio. It is observed that234U/238U α-activity ratios calculated from the atom ratio data are consistently high, with a mean difference of about 5%, when compared to the α-spectrometry results. This discrepancy warrants confirmation by a few more laboratories and suggests redetermination of the half-life values of234U and238U.  相似文献   

9.
Zusammenfassung Eine zur Bestimmung des Isotopenverhältnisses234U/238U in natürlichem Wasser geeignete Methodik wurde beschrieben. Die Anwendungs-bedingungen des einfachsten-Spektrometers, des Szintillations-Spektrometers sowie die Hauptschritte des Verfahrens werden angegeben und einige mit der beschriebenen Methode an verschiedenen Wasserproben bestimmten Isotopenverhältnisse werden angeführt.
The determination of the234U/238U ratio in samples of natural water
Summary A method suitable for the determination of the isotope ratio234U/238U in natural waters, is described. Conditions of the use of the most simple-spectrometer, the scintillation spectrometer, are discussed. The principal steps of the procedure are given, and the isotope ratios of various water samples determined with the method described are presented.
  相似文献   

10.
Activity concentrations of 238U, 235U and 234U were determined in different sources of drinking water at the Obuasi gold mines and its surrounding areas in Ghana. Water samples collected from the mines and its surrounding areas were analyzed using direct gamma-ray spectrometry and neutron activation analysis. The 234U/238U and 235U/238U ratios were calculated and the mean values range from 1.27 to 1.38 and from 0.044 to 0.045 respectively. The average 234U/238U ratio was from 1.27 for groundwater to 1.38 for treated water, demonstrating the lack of equilibrium. The average 235U/238U activity ratio is 0.045, indicating that only natural uranium was detected in the samples investigated.  相似文献   

11.
Samples of coastal marine sediments of the East Coast of India were leached with a saturated solution of ammonium carbonate for the extraction of uranium from the sediment particle surface without attacking the mineral core of the particles. All the sediment samples were found to exhibit a234U/238U activity ratio in the range of 1.07 to 1.14. On removal of surface organic matter, the234U/238U activity ratio is close to 1.00, indicating that the anomaly between238U and234U exists only on the labile surface layer. However, no such variations are observed in235U/238U activity ratios. These ratios are close to 0.045 which is the same as that of natural uranium.  相似文献   

12.
A study of the radioactive content of drinking mineral bottled water in Poland was carried out. 210Po,238U and 234U activity concentrations were determined by alpha-spectrometry with low-level-activity silicon detectors. The results revealed that the mean concentration of 210Po,238U and 234U in analyzed water sample were 1.28, 0.80 and 0.80 mBq.dm-3, respectively. The effective doses due to the polonium and uranium emissions were calculated for bottled drinking water.  相似文献   

13.
The234U/238U and235U/238U ratios from uranium compounds by -spectrometry technique have been obtained. Ten commercially available uranium reagents were analyzed. The well-separated peaks corresponding to uranium isotopes are evident, providing an energy spectrum of the -particles of uranium isotopes. It was found that some commerical uranium salts were depleted in234U and235U.  相似文献   

14.
238U, 234U and 210Po activity concentrations were determined in beer in Poland by alpha-spectrometry with low-level activity silicon detectors. The results revealed that the mean concentrations of 238U, 234U and 210Po in the analyzed beer samples were 4.63, 4.11 and 4.94 mBq·dm−3, respectively, the highest in Tyskie (5.71 for 210Po, 5.06 for 234U and 6.11 for 238U) and the lowest in Lech (2.49 for 210Po). The effective radiation dose due to uranium and polonium ingestions by beer was calculated and were compared to the effective radiation dose from drinking water. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Summary From the viewpoint of environmental radioactivity monitoring, the determination of uranium and its isotope ratio is important for identifying and assessing the environmental impact of any unexpected release from nuclear facilities. In this work, a survey was conducted to determine 238U concentrations and 235U/238U atom ratios in coastal waters off Rokkasho Village, Aomori, Japan, where several uranium-related nuclear facilities have been operating since 1992, and a newly constructed nuclear fuel reprocessing plant is scheduled to be commissioned in 2006. Seawater samples were analyzed directly after a 10-fold dilution using isotope dilution sector-field ICP-MS. Based on the results, we concluded that there is no observable uranium contamination in the investigated sites. In addition, for the first time, a correlation between uranium concentration and salinity was established in coastal waters using the SF-ICP-MS technique.  相似文献   

16.
High-resolution alpha-particle spectrometry was performed on three uranium materials enriched in 235U. Besides the 235U peaks, separate peaks belonging to impurity traces of 234U could be quantified. Relying on the isotopic composition of the uranium, as determined by mass spectrometry, the ratio of the half-lives of 238U and 235U was determined via the activity ratio of 234U and 235U in the materials. As an intermediate link, the 234U/238U half-life ratio was taken from published mass spectrometric analyses of ‘secular equilibrium’ uranium material. The resulting half-life ratio T 1/2(238U)/T 1/2(235U) = 6.351±0.031 is in agreement with the commonly adopted half-life values determined by Jaffey et al.  相似文献   

17.
Zheng J  Yamada M 《Talanta》2006,68(3):932-939
The determination of uranium is important for environmental radioactivity monitoring, which investigates the releases of uranium from nuclear facilities and of naturally occurring radioactive materials by the coal, oil, natural gas, mineral, ore refining and phosphate fertilizer industries, and it is also important for studies on the biogeochemical behavior of uranium in the environment. In this paper, we describe a quadrupole ICP-MS (ICP-QMS)-based analytical procedure for the accurate determination of U isotope ratios (235U/238U atom ratio and 234U/238U activity ratio) in sediment samples. A two-stage sample cleanup using anion-exchange and TEVA extraction chromatography was employed in order to obtain accurate and precise 234U/238U activity ratios. The factors that affect the accuracy and precision of U isotope ratio analysis, such as detector dead time, abundance sensitivity, dwell time and mass bias were carefully evaluated and corrected. With natural U, a precision lower than 0.5% R.S.D. for 235U/238U atom ratio and lower than 2.0% R.S.D. for 234U/238U activity ratio was obtained with less than 90 ng uranium. The developed analytical method was validated using an ocean sediment reference material and applied to an investigation into the uranium isotopic compositions in a sediment core in a brackish lake in the vicinity of U-related nuclear facilities in Japan.  相似文献   

18.
The determination of isotopes of uranium by alpha spectrometry in different environmental components (sediments, soil, water, plants and phosphogypsum) is presented and discussed in this paper. The alpha spectrometry is a very convenient and good technique for activity concentration of natural uranium isotopes (234U, 235U, 238U) in environmental samples and provides the most accurate determination of isotopic activity ratios between 234U and 238U. The analysis were provided information about possible sources of high concentrations of uranium in the examined sites determined by anthropogenic sources. The calculation of values 234U/238U in all analyzed samples was applied to identifying natural or anthropogenic uranium origin. Activity concentration of uranium isotopes in analyzed environmental samples shows that measurement of uranium levels is of great importance for environmental and safety assessment especially in contaminated areas (phosphogypsum waste heap).  相似文献   

19.
Uranium concentration in groundwater reflect both redox conditions and uranium content in host rock. In the present study an attempt has been made to study the uranium concentration and activity ratios of uranium isotopes to present the geochemical conditions of the groundwater in Malwa region of Punjab state, India and the reason for high uranium levels and variation of activity ratios from secular equilibrium conditions. Uranium concentration in groundwater samples was found to be in the range of 13.9 ± 1.2 to 172.8 ± 12.3 μg/l with an average value of 72.9 μg/l which is higher than the national and international guideline values. On the basis of uranium concentration, the groundwater of the study region may be classified as oxidized aquifer on normal uranium content strata (20 %) or oxidized aquifer on enhanced uranium content strata (80 %). The 238U, 235U and 234U isotopic concentration in groundwater samples was found to be in the range of 89.2–1534.5, 4.4–68.5, and 76.4–1386.2 mBq/l, respectively. Activity ratios of 234U/238U varies from 0.94 to 1.85 with a mean value of 1.11 which is close to unity that shows secular equilibrium condition. High value of 234U isotope than 238U may be due to alpha recoil phenomenon. The plot of AR of 234U/238U against the total uranium content in log scale reveals that the groundwaters of the study region either belongs to stable accumulation or normal oxidized aquifer.  相似文献   

20.
Nearshore surface sediments from various locations of the West Coast of India were leached by saturated ammonium carbonate solution for the extraction of uranium isotopes. The reagent chosen was found to have high efficiency for leaching uranium isotopes without attacking the mineral core of the sediment particle. The activity ratios of234U/238U are in the range of 1.11 to 1.14 and the activity ratios of235U/235U are in the range of 0.045 to 0.047. The respective activity ratios in leachates, and residues after removal of surface organic matter from the sediment particles by treatment with hydrogen peroxide and 0.05M HCl, revealed disequilibrium between238U and234U only in the surface organic matter. The activity ratios of234U/238U and235U/238U have also been determined in some seawater samples from the Arabian Sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号