首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
A model has been developed which includes, in a self-consistent fashion, the energy degradation and attendant bremsstrahlung emission of a high energy electron beam, the heating of the plasma by the beam and the subsequent cooling by thermal conduction and radiation. To assist in the interpretation of experimental diagnostics the model also characterizes the radiative behavior of iron ions present in the flare plasma. The electron deposition is described by the Fokker-Planck equation for an initial power law particle distribution. Results are presented for the bremsstrahlung radiation emitted by the incident beam as it impinges on the disturbed atmosphere. A comparison is made between the direct beam heating and thermal conduction heating of the flare plasma. Finally, the radiation emitted by several selected spectral lines from the Fe ions are shown as a function of time during and after the deposition.  相似文献   

2.
刘晓宙  朱忆  张飞  龚秀芬 《中国物理 B》2013,22(2):24301-024301
In most previous models,simulation of the temperature generation in tissue is based on the Pennes bio-heat transfer equation,which implies an instantaneous thermal energy deposition in the medium.Due to the long thermal relaxation time τ(20 s-30 s) in biological tissues,the actual temperature elevation during clinical treatments could be different from the value predicted by the Pennes bioheat equation.The thermal wave model of bio-heat transfer(TWMBT) defines a thermal relaxation time to describe the tissue heating from ultrasound exposure.In this paper,COMSOL Multiphysics 3.5a,a finite element method software package,is used to simulate the temperature response in tissues based on Pennes and TWMBT equations.We further discuss different factors in the bio-heat transfer model on the influence of the temperature rising and it is found that the temperature response in tissue under ultrasound exposure is a rising process with a declining rate.The thermal relaxation time inhibits the temperature elevation at the beginning of ultrasonic heating.Besides,thermal relaxation in TWMBT leads to lower temperature estimation than that based on Pennes equation during the same period of time.The blood flow carrying heat dominates most to the decline of temperature rising rate and the influence increases with temperature rising.On the contrary,heat diffusion,which can be described by thermal conductivity,has little effect on the temperature rising.  相似文献   

3.
Inertial cavitation has been shown to enhance heating rates during high intensity focused ultrasound treatments. Cavitation dynamics will be affected by heating and by the changes in mechanical properties of tissue resultant from thermal denaturation; however, the nature of the change is not known and forms the focus of the current study. A Keller-Miksis equation is used to find the variation in inertial cavitation threshold with temperature in water and, when coupled with a Kelvin-Voigt viscoelastic model, in biological tissue. Simulated thermal ablation treatments in liver and muscle are used to explore the changes in cavitation dynamics, and the resultant frequency spectra of secondary acoustic emissions, due to tissue denaturation. Results indicate that viscosity is the key parameter controlling cavitation dynamics in biological tissues. The increase in viscosity during denaturation is predicted to increase inertial cavitation thresholds, leading to a substantial decrease in the higher harmonic content of the emitted pressure signal across a wide range of bubble radii. Experimental validation of these observations could offer improved methods to monitor therapeutic ultrasound treatments.  相似文献   

4.
Systematic asymptotic methods are applied to the compressible conservation and state equations for a reactive gas, including transport terms, to develop a rational thermomechanical formulation for the ignition of a chemical reaction following time-resolved, spatially distributed thermal energy addition from an external source into a finite volume of gas. A multi-parameter asymptotic analysis is developed for a wide range of energy deposition levels relative to the initial internal energy in the volume when the heating timescale is short compared to the characteristic acoustic timescale of the volume. Below a quantitatively defined threshold for energy addition, a nearly constant volume heating process occurs, with a small but finite internal gas expansion Mach number. Very little added thermal energy is converted to kinetic energy. The gas expelled from the boundary of the hot, high-pressure spot is the source of mechanical disturbances (acoustic and shock waves) that propagate away into the neighbouring unheated gas. When the energy addition reaches the threshold value, the heating process is fully compressible with a substantial internal gas expansion Mach number, the source of blast waves propagating into the unheated environmental gas. This case corresponds to an extremely large non-dimensional hot-spot temperature and pressure. If the former is sufficiently large, a high activation energy chemical reaction is initiated on the short heating timescale. This phenomenon is in contrast to that for more modest levels of energy addition, where a thermal explosion occurs only after the familiar extended ignition delay period for a classical high activation reaction. Transport effects, modulated by an asymptotically small Knudsen number, are shown to be negligible unless a local gradient in temperature, concentration or velocity is exceptionally large.  相似文献   

5.
Methods for the bulk ablation of soft tissue using intense ultrasound, with potential applications in the thermal treatment of focal tumors, are presented. An approximate analytic model for bulk ablation predicts the progress of ablation based on tissue properties, spatially averaged ultrasonic heat deposition, and perfusion. The approximate model allows the prediction of threshold acoustic powers required for ablation in vivo as well as the comparison of cases with different starting temperatures and perfusion characteristics, such as typical in vivo and ex vivo experiments. In a full three-dimensional numerical model, heat deposition from array transducers is computed using the Fresnel approximation and heat transfer in tissue is computed by finite differences, accounting for heating changes caused by boiling and thermal dose-dependent absorption. Similar ablation trends due to perfusion effects are predicted by both the simple analytic model and the full numerical model. Comparisons with experimental results show the efficacy of both models in predicting tissue ablation effects. Phenomena illustrated by the simulations and experiments include power thresholds for in vivo ablation, differences between in vivo and ex vivo lesioning for comparable source conditions, the effect of tissue boiling and absorption changes on ablation depth, and the performance of a continuous rotational scanning method suitable for interstitial bulk ablation of soft tissue.  相似文献   

6.
This study investigates flow boiling heat transfer of aqueous alumina nanofluids in single microchannels with particular focuses on the critical heat flux (CHF) and the potential dual roles played by nanoparticles, i.e., (i) modification of the heating surface through particle deposition and (ii) modification of bubble dynamics through particles suspended in the liquid phase. Low concentrations of nanofluids (0.001–0.1 vol.%) are formulated by the two-step method and the average alumina particle size is ~25 nm. Two sets of experiments are performed: (a) flow boiling of formed nanofluids in single microchannels where the effect of heating surface modification by nanoparticle deposition is apparent and (b) bubble formation in a quiescent pool of alumina nanofluids under adiabatic conditions where the role of suspended nanoparticles in the liquid phase is revealed. The flow boiling experiments reveal a modest increase in CHF by nanofluids, being higher at higher nanoparticle concentrations and higher inlet subcoolings. The bubble formation experiments show that suspended nanoparticles in the liquid phase alone can significantly affect bubble dynamics. Further discussion reveals that both roles are likely co-existent in a typical boiling system. Properly surface-promoted nanoparticles could minimize particle deposition hence little modification of the heating surface, but could still contribute to the modification in heat transfer through the second mechanism, which is potentially promising for microchannel applications.  相似文献   

7.
提出了一种采用定形相变材料蓄能的低温热水采暖地板形式。为了研究定形相变材料蓄能式低温热水采暖地板的传热性能,建立了该地板的传热分析模型。分析了相变材料的相变温度对地板表面平均热流密度和蓄能比的影响;比较了相变材料潜热蓄能地板与混凝土显热蓄能地板的热性能差异。结果表明:定形相变材料地板停止加热后仍可以在较长时间内保持稳定的热流密度。同时定形相变材料地板具有较大的蓄能比,使其夜间蓄存的热量可被更多地用于日间供热。  相似文献   

8.
Resistive heating, emission heating or cooling (e.g., the Nottingham effect), and thermal fluctuation radiation are examples of energy exchange processes which are fundamental in electron field emission and in tunneling junctions of scanning tunneling microscopy. These exchange processes are analyzed for both electronic tunneling processes. We first discuss the energy delivered by a monoatomic tip in the field emission process. Strong phonon excitation is expected for field emission currents exceeding 1 nA. Secondly we present a theoretical calculation of the thermal deposition associated with the Nottingham effect in a tunneling junction. The calculation is based on the free electron model for the electrode materials and the tunneling process across a planar vacuum gap. Our results show that the thermal power is deposited not only at the electron receiving electrode but also at the emitting electrode. This originates from a finite probability for electrons below the Fermi level to tunnel through the tunneling barrier replaced by electrons starting from the Fermi level. The comparison between the calculations and the recent STM measurements is given. Finally we discuss the other energy exchange processes in the tunneling junction, and conclude that the thermal coupling between the tip and the sample of STM is extremely small under UHV conditions. This is important for high temperature STM.  相似文献   

9.
等离子体合成射流能量效率及工作特性研究   总被引:6,自引:0,他引:6       下载免费PDF全文
王林  罗振兵  夏智勋  刘冰 《物理学报》2013,62(12):125207-125207
基于等离子体激励器工作过程中气体放电的焦耳加热作用, 并结合局部热力学平衡等离子体物理假设, 开展了等离子体合成射流三维唯象数值研究, 获得了完整工作周期内等离子体合成射流流场发展演变过程. 研究结果表明, 单次能量沉积建立的自维持周期性射流中存在有实现激励器腔体"充分" 回填的最大脉冲工作频率––饱和频率. 大的能量沉积、小的激励器出口直径和相同腔体体积下大的径高比都可以产生速度更高的射流, 而射流速度的提高会伴随有饱和频率的降低. 一个饱和周期内, 最多约有16%的初始腔内气体喷出, 吸气复原仅能实现初始腔体质量90%左右的回填.一个大气压条件下, 容性电源供能的等离子体合成射流激励器电能向气体热能和射流动能的转化效率分别约为5%和1.6%. 关键词: 等离子体激励器 合成射流 能量效率 饱和频率  相似文献   

10.
The adsorption and desorption kinetics of silver on clean polycrystalline tungsten were investigated with a mass-spectrometric technique. The deposition up to about 2 monolayers occurred without two-dimensional phase transformation. The thermal accommodation coefficient was found to be unity. The desorption energy and frequency factor for different coverages were determined. The bonding of silver atoms in the first monolayer was found to be localized. Additionally, thermal desorption experiments with linear heating rate were carried out.  相似文献   

11.
The transition process to film pool boiling in microgravity is studied experimentally aboard the Chinese recoverable satellite S J-8. A quasi-steady heating method is adopted, in which the heating voltage is controlled to increase exponentially with time. Small, primary bubbles are formed and slid on the surface, which coalesce with each other to form a large coalesced bubble. Two ways are observed for the transition from nucleate to film boiling at different subcoolings. At high subcooling, the coalesced bubble with a smooth surface grows slowly. It is then difficult for the coalesced bubble to cover the whole heater surface, resulting in a special region of transition boiling in which nucleate boiling and local dry areas can coexist. In contrast, strong oscillation of the coalesced bubble surface at low subcooling may cause rewetting of local dry areas and activation of more nucleate sites, resulting in an abrupt transition to film boiling.  相似文献   

12.
张龙艳  徐进良  雷俊鹏 《物理学报》2018,67(23):234702-234702
采用分子动力学方法模拟纳米尺度下液体在固体壁面上发生核化沸腾的过程,主要研究壁面浸润性对气泡初始核化过程和气泡生长速率的影响以及固-液界面效应在液体核化沸腾的能量传递过程中所起到的作用.研究结果发现:壁面浸润性越强,气泡在固壁处越容易核化.该结果与经典核化理论中“疏水壁面易于产生气泡”的现象产生了明显的区别.其根本原因是在纳米尺度下,固-液界面热阻效应不能被忽略.一方面,在相同的壁温下,通过增强固-液相互作用,可以显著降低界面热阻,使得热量传递效率提高,导致靠近壁面处的流体温度升高,气泡核化等待时间缩短,有利于液体沸腾核化.另一方面,气泡的生长速率随着壁面浸润性的增强而明显升高.当气泡体积生长到一定程度时,会在壁面处形成气膜,从而导致壁面传热性能恶化.因此,通过壁面的热流密度呈现出先增大后减小的规律.  相似文献   

13.
Cavitation effects in pulsed laser ablation can cause severe deformation of tissue near the ablation site. In angioplasty, they result in a harmful dilatation and invagination of the vessel walls. We suggest to reduce cavitation effects by dividing the laser pulse energy into a pre-pulse with low and an ablation pulse with high energy. The pre-pulse creates a small cavitation bubble which can be filled by the ablation products of the main pulse. For suitable energy ratios between the pulses, this bubble will not be enlarged by the ablation products, and the maximal bubble size remains much smaller than after a single ablation pulse. The concept was analyzed by numerical calculations based on the Gilmore model of cavitation dynamics and by high-speed photography of the effects of single and double pulses performed with a silicone tube as vessel model. The use of double pulses prevents the deformation of the vessel walls. The concept works with an energy ratio of up to about 1:30 between the pulses. For the calculated optimal ratio of 1:14.6, the bubble volume is reduced by a factor of 17.7. The ablation pulse is best applied when the pre-pulse bubble is maximally expanded, but the timing is not very critical.  相似文献   

14.
This paper deals with a model linking bubble dynamics under an acoustic pressure field and production of free radicals in the resulting collapses of this bubble. The bubble dynamics model includes interdiffusion of gas and vapour in the bubble as well as evaporation or condensation at the interface, and it assumes uniformity of the internal pressure and perfect gas law for the gas vapour mixture. At the maximum compression of the bubble, all the reactions of dissociation which can occur are assumed at thermodynamic equilibrium. The local composition (especially in free radicals) in the bubble is then calculated by an algorithm based on free energy minimization using the information concerning the maximum compression provided by the bubble dynamics model resolution. Using this model a comparison of free radicals production has been made for two different driving frequencies (20 kHz and 500 kHz), and at given bubble radius and acoustic pressure, an optimum of liquid bulk temperature has been derived for the production of free radicals very similar to the experimental one concerning oxidation reactions in aqueous phase.  相似文献   

15.
The paper presents the results of an experimental study of dynamics of vapor bubble growth and departure at pool boiling, obtained with the use of high-speed video recording and IR thermography. The study was carried out at saturated water boiling under the atmospheric pressure in the range of heat fluxes of 30?150 kW/m2. To visualize the process and determine the growth rates of the outer bubble diameter, microlayer region and dry spot area, transpa-rent thin film heater with the thickness of 1 μm deposited on sapphire substrate was used in the experiments, and video recording was performed from the bottom side of the heating surface. To study integral heat transfer as well as local non-stationary thermal characteristics, high-speed infrared thermography with a frequency of up to 1000 FPS was used. High-speed video recording showed that after formation of vapor bubble and microlayer region, dry spot appears in a short time (up to 1 ms) under the vapor bubble. Various stages of contact line boundary propagation were ob-served. It was shown that at the initial stage before the development of small-scale perturbations, the dry spot propaga-tion rate is constant. It was also showed that the bubble departure stage begins after complete evaporation of liquid in the microlayer region.  相似文献   

16.
本文在经典汽泡动力学理论基础上,提出了描述汽泡生长过程的综合界面模型.本模型的核心在于汽泡内部的热力学过程的详细分析及汽液界面的传热、传质过程的详细描述.并对汽泡生长过程进行了模拟计算,给出了动力学控制阶段的时间范围.本模型对汽泡生长、汽膜发展的理论分析及数值模拟提供了良好的基础.  相似文献   

17.
A theoretical investigation of the forced linear oscillations of a gas microbubble in a blood capillary, whose radius is comparable in size to the bubble radius is presented. The natural frequency of oscillation, the thermal and viscous damping coefficients, the amplitude resonance, the energy resonance, as well as the average energy absorbed by the system, bubble plus vessel, have been computed for different kinds of gas microbubbles, containing air, octafluropropane, and perflurobutane as a function of the bubble radius and applied frequency. It has been found that the bubble behavior is isothermal at low frequencies and for small bubbles and between isothermal and adiabatic for larger bubbles and higher frequencies, with the viscous damping dominating over the thermal damping. Furthermore, the width of the energy resonance is strongly dependent on the bubble size and the natural frequency of oscillation is affected by the presence of the vessel wall and position of the bubble in the vessel. Therefore, the presence of the blood vessel affects the way in which the bubble absorbs energy from the ultrasonic field. The motivation of this study lies in the possibility of using gas microbubbles as an aid to therapeutic focused ultrasound treatments.  相似文献   

18.
徐涵  卓红斌  杨晓虎  侯永  银燕  刘杰 《计算物理》2017,34(5):505-525
相对论激光等离子体相互作用以及所产生的带电粒子束在高密度等离子体中的输运行为非常重要.该物理问题的数值模拟研究仍面临技术挑战.本文介绍一种粒子/流体混合模拟方法.该方法中超热电子采用动力学方法描述,背景冷的稠密等离子体采用简化的流体方程描述,适合于超热电子密度远小于背景电子密度,超热电子能量远大于背景电子温度.我们的三维并行混合模拟程序HEETS的模拟结果表明:背景材料的电离和电阻率模型至关重要,将严重影响高能电子输运过程的模拟.  相似文献   

19.
An online thermogravimetric measurement method of ash deposition was developed. Ash deposition and slag bubble in the reductive zone of pulverized coal staged combustion were investigated. Firstly, a steady pulverized coal staged combustion was achieved in an electrically heated down-fired furnace. Additionally, gas species, coal conversion, and particle size distribution were quantitatively measured. Secondly, real-time ash deposition rates at different temperatures (1100–1400 °C) were measured, and deposition samples were carefully collected with an N2 protection method. The morphologies of collected samples were investigated through a scanning electron microscope. It was found that the deposited ash transformed from a porous layer composed of loosely bound particles to a solid layer formed by molten slag. Different behaviors of the slag bubble were observed, and bubble sizes were significantly affected by the deposition temperature. A deposition and bubble formation mechanism was proposed and used for modeling. Results showed that the proposed model well predicted the observed ash deposition and bubble formation process.  相似文献   

20.
As suprathermal fusion products (fp's) slow down in a Tokamak, their average drift is inward. The effect that this drift has on the spatial distribution profile for suprathermals approaching thermal energies, on the energy distribution, and on the plasma heating profile, is examined for five reactor cases ranging from near-term low-current devices to conceptual power reactors. In-situ energy deposition is shown to be a reasonable assumption for the higher current machines, differing in the plasma heating evaluation by only a few percent compared to a more exact Monte Carlo-like treatment (SYMALF). However, for lower current Tokamaks the SYMALF method (or, for approximate work, in-situ modified by a loss fraction) appears necessary. It is also shown that, for certain cases, the fp energy distribution near the plasma edge has a positive slope with increasing energy, representing a possible driving mechanism for micro-instabilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号