首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
使用DFTB方法研究多种单壁碳纳米管(SWCNTs)的应力-应变关系,预测了在几何限制作用下,其杨氏模量和能带结构的变化规律.系统探讨了外部应力作用下SWCNTs内外表面吸附H_2,N_2和H_2S气体分子能力的变化规律,确定了SWCNTs对于上述混合气体的分离和提纯能力.  相似文献   

2.
The interaction of acetone with single wall carbon nanotubes (SWCNTs) at low temperatures was studied by a combination of temperature programmed desorption (TPD) and dispersion-augmented density-functional-based tight binding (DFTB-D) theoretical simulations. On the basis of the results of the TPD study and theoretical simulations, the desorption peaks of acetone can be assigned to the following adsorption sites: (i) sites with energy of approximately 75 kJ mol (-1) ( T des approximately 300 K)endohedral sites of small diameter nanotubes ( approximately 7.7 A); (ii) sites with energy 40-68 kJ mol (-1) ( T des approximately 240 K)acetone adsorption on accessible interstitial, groove sites, and endohedral sites of larger nanotubes ( approximately 14 A); (iii) sites with energy 25-42 kJ mol (-1) ( T des approximately 140 K)acetone adsorption on external walls of SWCNTs and multilayer adsorption. Oxidatively purified SWCNTs have limited access to endohedral sites due to the presence of oxygen functionalities. Oxygen functionalities can be removed by annealing to elevated temperature (900 K) opening access to endohedral sites of nanotubes. Nonpurified, as-received SWCNTs are characterized by limited access for acetone to endohedral sites even after annealing to elevated temperatures (900 K). Annealing of both purified and as-produced SWCNTs to high temperatures (1400 K) leads to reduction of access for acetone molecules to endohedral sites of small nanotubes, probably due to defect self-healing and cap formation at the ends of SWCNTs. No chemical interaction between acetone and SWCNTs was detected for low temperature adsorption experiments. Theoretical simulations of acetone adsorption on finite pristine SWCNTs of different diameters suggest a clear relationship of the adsorption energy with tube sidewall curvature. Adsorption of acetone is due to dispersion forces, with its C-O bond either parallel to the surface or O pointing away from it. No significant charge transfer or polarization was found. Carbon black was used to model amorphous carbonaceous impurities present in as-produced SWCNTs. Desorption of acetone from carbon black revealed two peaks at approximately 140 and approximately 180-230 K, similar to two acetone desorption peaks from SWCNTs. The characteristic feature of acetone desorption from SWCNTs was peak at approximately 300 K that was not observed for carbon black. Care should be taken when assigning TPD peaks for molecules desorbing from carbon nanotubes as amorphous carbon can interfere.  相似文献   

3.
We present evidence from multiple characterization methods, such as emission spectroscopy, zeta potential, and analytical ultracentrifugation, to shed light on the adsorption behavior of synthesized perylene surfactants on single-walled carbon nanotubes (SWCNTs). On comparing dispersions of smaller-diameter SWCNTs prepared by using cobalt-molybdenum catalysis (CoMoCAT) with the larger-diameter SWCNTs prepared by high-pressure carbon monoxide decomposition (HiPco), we find that the CoMoCAT-perylene surfactant dispersions are characterized by more negative zeta potentials, and higher anhydrous specific volumes (the latter determined from the sedimentation coefficients by analytical ultracentrifugation), which indicates an increased packing density of the perylene surfactants on nanotubes of smaller diameter. This conclusion is further supported by the subsequent replacement of the perylene derivatives from the nanotube sidewall by sodium dodecyl benzene sulfonate (SDBS), which first occurs on the larger-diameter nanotubes. The enhanced adsorption affinity of the perylene surfactants towards smaller-diameter SWCNTs can be understood in terms of a change in the supramolecular arrangement of the perylene derivatives on the scaffold of the SWCNTs. These findings represent a significant step forward in understanding the noncovalent interaction of π-surfactants with carbon nanotubes, which will enable the design of novel surfactants with enhanced selectivity for certain nanotube species.  相似文献   

4.
The development of new methods for the facile synthesis of hybrid nanomaterials is of great importance due to their importance in nanotechnology. In this work, we report a new method to deposit Au nanoparticles on the surface of single-walled carbon nanotubes (SWCNTs). Our approach consists of a one pot synthesis in which Au nanoparticles are generated in the presence of a photoreducing agent (Irgacure-2959) and carboxyl or polymer-functionalized SWCNTs (f-SWCNTs). We have observed that when carbon nanotubes are functionalized with polymers containing pendant amino groups, the latter can act as specific nucleation sites for well-dispersed deposition of Au nanoparticles. The surface coverage of the Au nanoparticles can be observed by transmission electron spectroscopy. These observations are compared to that of carboxyl functionalized SWCNTs, in which less surface coverage was observed. The f-SWCNT/Au nanocomposites were also characterized by UV-vis, infrared, and Raman spectroscopy and thermogravimetric analysis (TGA). This facile and effective route can be implemented to deposit gold nanoparticles on other surface-functionalized carbon nanotubes.  相似文献   

5.
Bilirubin adsorption on carbon nanotube surfaces has been studied to develop a new adsorbent in the plasma apheresis. Powder-like carbon nanotubes were first examined under various adsorption conditions such as temperatures and initial concentrations of bilirubin solutions. The adsorption capacity was measured from the residual concentrations of bilirubin in the solution after the adsorption process using a visible absorption spectroscopy. We found that multi-walled carbon nanotubes (MWCNTs) exhibit greater adsorption capacity for bilirubin molecules than that of single-walled carbon nanotubes (SWCNTs). To guarantee the safety of the adsorbents, we fabricated carbon nanotube sheets in which leakage of CNTs to the plasma is suppressed. Since SWCNTs are more suitable for robust sheets, a complex sheet consisting of SWCNTs as the scaffolds and MWCNTs as the efficient adsorbents. CNT/polyaniline complex sheets were also fabricated. Bilirubin adsorption capacity of CNTs has been found to be much larger than that of the conventional materials because of their large surface areas and large adsorption capability for polycyclic compound molecules due to their surface structure similar to graphite.  相似文献   

6.
应用密度泛函理论研究了纯(8, 0)单壁碳纳米管(SWCNT)和B原子、N原子以及BN原子对掺杂的(8, 0) SWCNTs对硫化氢气体分子的传感性质. 计算结果表明, 与纯碳纳米管相比, B原子掺杂的SWCNT显示了对H2S分子的敏感性, 其几何结构和电子性质在吸附H2S分子后发生了显著变化; 而N原子和BN原子对的掺杂没有改善SWCNT对H2S分子的吸附性能, 因此我们建议B原子掺杂的SWCNT作为检测H2S分子的新型气相传感器.  相似文献   

7.
Adsorption from toluene solution of phenanthrene and tetracene on single wall carbon nanotubes (SWCNT) is measured. Comparison of adsorbents such as laser ablation and HipCO samples reveals multiple factors influencing the adsorption mechanism. Acid functionalized carbon nanotubes have shown markedly increased adsorbability for the polyaromatic molecules. The linear tetracene molecule's adsorption is more promoted on nanotubes with increasing diameter, but also additionally with presence of the carboxylic groups. The adsorption mechanisms on carboxylic sites and on the bold, non-functionalized large-diameter nanotubes are suggested and supported by detailed characterization of the SWCNTs applied.  相似文献   

8.
van der Waals layer-by-layer construction of a carbon nanotube 2D network   总被引:1,自引:0,他引:1  
The acid-treated single-walled carbon nanotubes (SWCNTs) dispersed in water are only kinetically stable with electrostatic double layer repulsions just balancing against van der Waals (VDW) attractions. Introducing any external factor to disturb this balance causes immediate coagulation of SWCNTs. Here, an amine-covered flat substrate was immersed in the dispersion to initiate adsorption of SWCNTs onto the substrate surface. By repeating an adsorption-rinse-dry cycle, it was possible to deposit SWCNT bundles in a layer-by-layer fashion and to develop a 2D network consisting only of SWCNTs that are held by VDW interaction. We show that (1) adsorbed solution-grown aggregates are not relevant for the network connectivity, (2) 2D percolation takes place at very low surface coverage, (3) the electrical resistivity follows a power law against the layering cycles, (4) not only the adsorbed amount but also the added amount per layering cycle increases linearly with the SWCNT concentration, and (5) after the adsorption is initiated by amines, VDW attraction takes over for subsequent adsorption, with the consequence that the newly adsorbed SWCNTs are used to thicken each arm of the network rather than to cover more free surfaces.  相似文献   

9.
Interaction energies and entropies associated with hydrogen adsorption on the inner and outer surfaces of zigzag single-wall carbon nanotubes (SWCNT) of various diameters are analyzed by means of molecular mechanics, density functional theory, and ab initio calculations. For a single molecule the strongest interaction, which is 3.5 greater than that with the planar graphite sheet, is found inside a (8,0) nanotube. Adsorption on the outer surfaces is weaker than that on graphite. Due to the steric considerations, both processes are accompanied by an extremely strong decline in entropy. Absence of specific adsorption sites and weak attractive interaction between hydrogen molecules within carbon nanotubes results in their close packing at low temperatures. Using the calculated geometric and thermodynamic parameters in Langmuir isotherms we predict the adsorption capacity of SWCNTs at room temperature to be smaller than 1 wt % even at 100 bar.  相似文献   

10.
11.
Single-wall carbon nanotubes (SWCNTs) are commonly dispersed via sonication in a solvent prior to functionalization. We show that solvents such as dichloromethane, chloroform, 1,2-dichloroethane, and o-dichlorobenzene lead to an upward shift in the Raman response of the SWCNTs. We have used o-dichlorobenzene as a model molecule to explain this effect, and an upward shift of 9 cm(-1) is observed in the D* band. This blue shift is associated with p-type doping and is triggered only when the nanotubes are sonicated in the solvent. Sonication decomposes the chlorinated solvents, and new species (Cl2 and HCl(g)) are formed. The catalytic Fe nanoparticles inherently present in the nanotubes are etched by chlorine and hydrogen chloride to form iron chlorides during sonication in the solvent. The dopant was identified by X-ray photoelectron spectroscopy. With such knowledge of doping, the choice of solvent becomes crucial for any chemical reaction and can be intentionally tuned to produce SWCNTs films for electronics applications.  相似文献   

12.
First-principles calculations based on density functional theory (DFT) method are used to investigate the adsorption properties of nerve agent DMMP on typical zigzag (semiconducting) and armchair (metallic) single wall carbon nanotubes (SWCNTs). The adsorption energies for DMMP molecule on different adsorption sites on SWCNTs are obtained. The results indicate that DMMP is weakly bound to the outer surface of both the considered SWCNTs and the obtained adsorption energy values and binding distances are typical for the physisorption. We find that DMMP adsorptive capability of metallic CNTs is about twofold that of semiconducting one. The adsorption of DMMP on the higher chiral angle nanotubes was also investigated and the results indicate that nanotube’s chirality increases the adsorption capability of the tube but however the adsorption characteristic is typical for the physisorption. Furthermore, co-adsorption of two DMMP molecules on the SWCNTs as a single-layer/bi-layer of adsorbed molecules as well as the adsorption of one DMMP molecule on the CNT bundles consisting of three SWCNTs has also been examined. The obtained results reveal that for both the considered systems the binding energy was increased for the DMMP adsorption but it’s still typical for the physisorption, consistent with the recent experimental result. The study of the electronic structures and charge analysis indicate that no significant hybridization between the respective orbital takes place and the small interaction obtained quantitatively in terms of binding energies.  相似文献   

13.
新型单壁碳纳米管采样吸附剂性能的评价   总被引:3,自引:0,他引:3  
研究了单壁碳纳米管(SWCNTs)作为新型采样吸附剂的性能和效果,并应用于空气中挥发性有机化合物的分析测定。结果表明,单壁碳纳米管具有较大的比表面积,与经典Tenax TA吸附剂相比,对低碳数挥发性强的有机化合物回收率高,有更强的吸附能力;空白实验表明,SWCNTs易获得较低本底,具有化学惰性和疏水特性,采样时水的干扰小。当湿度增加时在误差允许的范围内准确度不受影响;实验测定具有较大的穿透容量和安全采样体积。将单壁碳纳米管吸附剂实际应用于大气中挥发性有机化合物的测定,通过与经典吸附剂Tenax TA相比,更适于采集大气中的挥发性有机化合物。  相似文献   

14.
We investigated the adsorption of hydrogen atoms on metallic single-walled carbon nanotubes using ab initio molecular dynamics method. It was found that the geometric structures and the electronic properties of hydrogenated SWNTs can be strongly changed by varying hydrogen coverage. The circular cross sections of the CNTs were changed with different hydrogen coverage. When hydrogen is chemisorbed on the surface of the carbon nanotube, the energy gap will be appeared. This is due to the degree of the sp3 hybridization, and the hydrogen coverage can control the band gap of the carbon nanotube.  相似文献   

15.
Single-walled carbon nanotubes (SWCNTs), multiwalled carbon nanotubes (MWCNTs), and oxidized MWCNTs (O-MWCNTs) were studied for the adsorption of ibuprofen (IBU) and triclosan (TCS) as representative types of pharmaceutical and personal care products (PPCPs) under different chemical solution conditions. A good fitting of sorption isotherms was obtained using a Polanyi-Manes model (PMM). IBU and TCS sorption was stronger for SWCNTs than for MWCNTs due to higher specific surface area. The high oxygen content of O-MWCNT further depressed PPCP sorption. The sorption capacity of PPCPs was found to be pH-dependent, and more adsorption was observed at pHs below their pK(a) values. Ionic strength was also found to substantially affect TCS adsorption, with higher adsorption capacity observed for TCS at lower ionic strength. In the presence of a reference aquatic fulvic acid (FA), sorption of IBU and TCS was reduced due to the competitive sorption of FA on carbon nanotubes (CNTs). Sorption isotherm results with SWCNTs, MWCNTs and O-MWCNTs confirmed that the surface chemistry of CNTs, the chemical properties of PPCPs, and aqueous solution chemistry (pH, ionic strength, fulvic acid) all play an important role in PPCP adsorption onto CNTs.  相似文献   

16.
Here we report a chemical-free, simple, and novel method in which a part from a silver-based anode is controllably used in a straightforward manner to produce silver nanoparticles (Ag NPs) in order to fabricate a controlled assembly of Ag NPs and single walled carbon nanotube (SWCNT) hybrid structures. The attachment and distribution of Ag NPs along SWCNTs have been investigated and characterized by field emission scanning electron microscopy (FESEM). We have achieved the decoration of SWCNTs with different densities of Ag NPs by changing the deposition time, the applied voltage, and the location of carbon nanotubes with respect to the anode. At low voltage, single silver nanoparticle is successfully attached at the open ends of SWCNTs whereas at high voltage, intermediate and full coverage densities of Ag NPs are observed. As voltage is further increased, fractals of Ag NPs along SWCNTs are observed. In addition, a device based on a Ag NPs-SWNT hybrid structure is used for the label-free detection of ssDNA molecules immobilized on it. We believe that the proposed method can be used to decorate and/or assemble metal nanoparticles or fractal patterns along SWCNTs with different novel metals such as gold, silver, and copper and can be exploited in various sensitive applications for fundamental research and nanotechnology.  相似文献   

17.
18.
Coexistence of metallic and semiconducting carbon nanotubes has often been a bottleneck in many applications and much fundamental research. Single-walled carbon nanotubes (SWCNTs) were dissolved in HNO3/H2SO4 mixture to confirm differing reactivity between metallic (m) and semiconducting (s) SWCNTs. With HNO3/H2SO4 treatment, s-SWCNTs remained intact, while m-SWCNTs were completely removed for SWCNTs with small diameters less than 1.1 nm, which was confirmed by resonant Raman and optical absorption spectra. We also showed that nitronium ions (NO2+) dissolved in the HNO3/H2SO4 solution could preferably attack the m-SWCNTs, which was supported by our theoretical calculation. This clear selectivity can be explained by the preferential adsorption of positively charged NO2+ on m-SWCNTs due to more available electron densities at the Fermi level in the m-SWCNTs. We report for the first time a selective removal of small-diameter m-SWCNTs by using HNO3/H2SO4 solution, which presented a striking contrast to the diameter-selective removal of SWCNTs by oxidative etching reported previously.  相似文献   

19.
Recently there has been lot of interest in the development of hydrogen storage in various systems for the large-scale application of fuel cells, mobiles and for automotive uses. Hectic materials research is going on throughout the world with various adsorption mechanisms to increase the storage capacity. It was observed that physisorption proves to be an effective way for this purpose. Some of the materials in this race include graphite, zeolite, carbon fibers and nanotubes. Among all these, the versatile material carbon nanotube (CNT) has a number of favorable points like porous nature, high surface area, hollowness, high stability and light weight, which facilitate the hydrogen adsorption in both outer and inner portions. In this work we have considered armchair (5,5), zig zag (10,0) and chiral tubes (8,2) and (6,4) with and without structural defects to study the physisorption of hydrogen on the surface of carbon nanotubes using DFT calculations. For two different H2 configurations, adsorption binding energies are estimated both for defect free and defected carbon nanotubes. We could observe larger adsorption energies for the configuration in which the hydrogen molecular axis perpendicular to the hexagonal carbon ring than for parallel to C–C bond configuration corresponding to the defect free nanotubes. For defected tubes the adsorption energies are calculated for various configurations such as molecular axis perpendicular to a defect site octagon and parallel to C–C bond of octagon and another case where the axis perpendicular to hexagon in defected tube. The adsorption binding energy values are compared with defect free case. The results are discussed in detail for hydrogen storage applications.  相似文献   

20.
Combined ab initio and grand canonical Monte Carlo simulations have been performed to investigate the dependence of hydrogen storage in single-walled carbon nanotubes (SWCNTs) on both tube curvature and chirality. The ab initio calculations at the density functional level of theory can provide useful information about the nature of hydrogen adsorption in SWCNT selected sites and the binding under different curvatures and chiralities of the tube walls. Further to this, the grand canonical Monte Carlo atomistic simulation technique can model large-scale nanotube systems with different curvature and chiralities and reproduce their storage capacity by calculating the weight percentage of the adsorbed material (gravimetric density) under thermodynamic conditions of interest. The author's results have shown that with both computational techniques, the nanotube's curvature plays an important role in the storage process while the chirality of the tube plays none.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号