首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
用平均速度剖面法测量壁湍流摩擦阻力   总被引:10,自引:1,他引:9  
樊星  姜楠 《力学与实践》2005,27(1):28-30
用IFA300恒温热线风速仪精细测量风洞中不同雷诺数流动条件下的平板湍流边界层近壁区域对数律平均速度剖面.利用平板湍流边界层近壁区域的对数律平均速度剖面与壁面摩擦速度、流体黏性系数等内尺度物理量的关系和壁面摩擦速度与壁面摩擦切应力的关系,在准确测量平板湍流边界层近壁区域对数律平均速度剖面的基础上,测量平板湍流边界层的壁面摩擦阻力.实现了平板湍流边界层壁面摩擦阻力的无干扰或微小干扰测量.该种方法操作简便,不需要在流场中安装测力天平、传感器等复杂的测量装置,不需要对湍流边界层的壁面进行破坏,不会影响湍流边界层壁面附近区域原有的流场条件,是一种切实可行的测量平板湍流边界层壁面摩擦阻力的简便方法.  相似文献   

2.
The effect of micro-bubbles on the turbulent boundary layer in the channel flow with Reynolds numbers (Re) ranging from \(0.87\times 10 ^{5}\) to \(1.23\times 10^{5}\) is experimentally studied by using particle image velocimetry (PIV) measurements. The micro-bubbles are produced by water electrolysis. The velocity profiles, Reynolds stress and instantaneous structures of the boundary layer, with and without micro-bubbles, are measured and analyzed. The presence of micro-bubbles changes the streamwise mean velocity of the fluid and increases the wall shear stress. The results show that micro-bubbles have two effects, buoyancy and extrusion, which dominate the flow behavior of the mixed fluid in the turbulent boundary layer. The buoyancy effect leads to upward motion that drives the fluid motion in the same direction and, therefore, enhances the turbulence intense of the boundary layer. While for the extrusion effect, the presence of accumulated micro-bubbles pushes the flow structures in the turbulent boundary layer away from the near-wall region. The interaction between these two effects causes the vorticity structures and turbulence activity to be in the region far away from the wall. The buoyancy effect is dominant when the Re is relatively small, while the extrusion effect plays a more important role when Re rises.  相似文献   

3.
The motion of turbulent Stokes waves on a finite constant depth fluid with a rough bed is considered. First and second order turbulent boundary layer equations are solved numerically for a range of roughness parameters, and from the solutions are calculated the mass transport velocity profiles and attenuation coefficients. A new mechanism of turbulent mass transport is found which predicts a reduction and reversal of drift velocity in shallow water in agreement with experimental observations under turbulent conditions. This transpires because the second order Stokes wave motion, in a turbulent boundary layer, can directly influence the mass transport velocity by mode coupling interactions between different second order Fourier modes of oscillation. It is also found that the Euler contribution due to the radiation stress of the first order motion is reduced to half of it's corresponding laminar value as a consequence of the velocity squared stress law. The attenuation is found to be of inverse algebraic type with the reciprocal wave height varying linearly with either distance or time. The severe wave height restriction applicable to the Longuet-Higgins [4] solution is shown not to apply to progressive waves on a finite constant depth of fluid. The existence of sand bars on sloping beaches exposed to turbulent waves is predicted.  相似文献   

4.
The flow at the outer boundary of a submerged self-similar turbulent jet at Re=2᎒3 is investigated experimentally by means of combined particle image velocimetry (PIV) laser-induced fluorescence (LIF) measurements. The jet fluid contains a fluorescent dye so that the LIF data can be used to discriminate between the jet fluid and the ambient fluid. The axial velocity, Reynolds stress, and vorticity are determined relative to the jet boundary. The results are compared against the conventional profiles, and the results of a direct numerical simulation of the turbulent far-wake behind a flat plate. The results show a sharp transition between rotational and irrotational fluid at the fluid interface, and the existence of a layer of irrotational velocity fluctuations outside the turbulent region.  相似文献   

5.
暖季强降雨对多年冻土南界斜坡路基稳定性影响分析   总被引:2,自引:0,他引:2  
蔡书鹏  杨林  唐川林 《力学学报》2008,40(2):250-254
为阐明表面活性剂水溶液的减阻作用,使用LDV对零压梯度的二维湍流平板边界层中的CTAB 表面活性剂水溶液的湍流特性进行了实验研究. 结果表明:与牛顿流体相比,CTAB水溶液边 界层的粘性底层增厚;主流时均速度分布有被层流化的趋势,对数分布域上移;主流方向速 度湍动强度峰值减小,且远离壁面,在靠近边界层中部,出现第2峰值;垂直于主流方向的 速度湍动强度受到了大幅度抑制,雷诺应力沿着边界层厚度方向几乎为零. 结果说明CTAB 水溶液具有减弱湍流湍动各个成分相关度的作用,从而能够使雷诺应力降低、湍流能量生成 项减小最终降低流体的输送动力.  相似文献   

6.
Time-developing direct numerical simulation (DNS) was performed to clarify the higher-order turbulent behaviors in the thermally-driven boundary layers both in air and water along a heated vertical flat plate. The predicted statistics of the heat transfer rates and the higher-order turbulent behaviors such as skewness factors, flatness factors and spatial correlation coefficients of the velocity and temperature fluctuations in the natural-convection boundary layer correspond well with those obtained from experiments for space-developing flows. The numerical results reveal that the turbulent structures of the buoyancy-driven boundary layers are mainly controlled by the fluid motions in the outer region of the boundary layer, and these large-scale structures are strongly connected with the generation of turbulence in the thermally-driven boundary layers, in accordance with the actual observations for space-developing flows. Moreover, to specify the turbulence structures of the boundary layers, the cross-correlation coefficients and the characteristic length scales are examined for the velocity and thermal fields. Consequently, it is found that with a slight increase in freestream velocity, the cross-correlation coefficient for the Reynolds shear stress and turbulent heat flux increases for opposing flow and decreases for aiding flow, and the integral scales for the velocity and temperature fields become larger for opposing flow and smaller for aiding flow compared with those for the pure natural-convection boundary layer.  相似文献   

7.
减阻工况下壁面周期扰动对湍流边界层多尺度的影响   总被引:1,自引:0,他引:1  
通过在平板壁面施加不同频率振幅的压电陶瓷振子周期性扰动,进行了湍流边界层主动控制减阻的实验研究.在压电陶瓷振子最大减阻工况下(80 V和160Hz),使用单丝边界层探针对压电振子自由端下游2mm处进行测量,得到不同法向位置流向速度信号的时间序列.通过对比施加控制前后的多尺度分析,发现压电振子产生的扰动只对近壁区产生影响,使得近壁区大尺度脉动降低,小尺度脉动强度增大,而对边界层的外区则基本没有影响.进一步对大尺度和小尺度的脉动信号进行条件平均,发现压电振子产生的扰动对小尺度脉动的影响在时间相位上并不均匀,小尺度脉动强度在大尺度脉动为正时比在大尺度脉动为负时具有更明显的增加.这表明壁面周期扰动主要通过使大尺度高速扫掠流体破碎为小尺度结构,来影响相应的高壁面摩擦事件,从而达到减阻效果.   相似文献   

8.
The problem of convection in the horizontal fluid layer with a wavy lower boundary is considered. It is shown that for the periodic temperature distribution with a certain phase shift given on the wavy boundary, in the fluid layer a unidirectional horizontal flow arises. The flow velocity linearly decreases with increase in attitude and depends on the relief distribution wavelength. There is an optimum wavelength (of the order of the layer thickness) at which the velocity reaches its maximum value.  相似文献   

9.
Turbulent plane boundary layer flows of an incompressible fluid are considered. A refinement of the known Coles wake law is proposed. This refinement makes it possible to ensure the smooth matching of the turbulent boundary layer velocity profile with the outer flow and to extend the range of validity of the law to the case of large positive pressure gradients. The accuracy of the analytical approximation obtained is verified by comparison with the known experimental equilibrium velocity profiles. Using the approximation proposed, a relation for calculating the cross-sectional distribution of the Reynolds stress in the equilibrium boundary layer is derived. The pressure distributions for which the equilibrium turbulent boundary layer flows are single- and two-valued are distinguished.__________Translated from Izvestiya Rossiiskoi Academii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, 2005, pp. 89–101.Original Russian Text Copyright © 2005 by Mikhailov.  相似文献   

10.
We perform direct numerical simulation of three‐dimensional turbulent flows in a rectangular channel, with a lattice Boltzmann method, efficiently implemented on heavily parallel general purpose graphical processor units. After validating the method for a single fluid, for standard boundary layer problems, we study changes in mean and turbulent properties of particle‐laden flows, as a function of particle size and concentration. The problem of physical interest for this application is the effect of water droplets on the turbulent properties of a high‐speed air flow, near a solid surface. To do so, we use a Lagrangian tracking approach for a large number of rigid spherical point particles, whose motion is forced by drag forces caused by the fluid flow; particle effects on the latter are in turn represented by distributed volume forces in the lattice Boltzmann method. Results suggest that, while mean flow properties are only slightly affected, unless a very large concentration of particles is used, the turbulent vortices present near the boundary are significantly damped and broken down by the turbulent motion of the heavy particles, and both turbulent Reynolds stresses and the production of turbulent kinetic energy are decreased because of the particle effects. We also find that the streamwise component of turbulent velocity fluctuations is increased, while the spanwise and wall‐normal components are decreased, as compared with the single fluid channel case. Additionally, the streamwise velocity of the carrier (air) phase is slightly reduced in the logarithmic boundary layer near the solid walls. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
本文以镶嵌在平板上沿展向对放的两个压电陶瓷振子为主动控制激励器,自主设计了零质量射流主动控制湍流边界层减阻实验方案.在风洞中开展了双压电振子同步和异步振动主动控制湍流边界层减阻的实验研究,实现了压电振子的周期扰动对湍流边界层多尺度相干结构的干扰和调制,施加控制后减小了壁面摩擦阻力,获得减阻效果.当异步控制100 V, 160 Hz工况时得到最大减阻率为18.54%.小波多尺度分析结果表明,施加控制工况中PZT振子的周期性扰动使得小尺度结构的湍流脉动强度增强,改变了近壁区大尺度和小尺度结构的含能分布,且异步控制工况比同步控制工况的减阻效果好.当双振子振动频率为160 Hz时,流向脉动速度的小波系数PDF曲线呈现出波动特征,尾部变宽显著,近壁湍流脉动更加有序和规则,湍流间歇性减弱.对小尺度脉动进行条件相位平均的结果表明,施加PZT周期扰动后使得大尺度结构破碎成为小尺度结构,小尺度脉动强度增强,实现减阻.随着流向位置离PZT振子越来越远,周期性扰动对相干结构的调制作用逐渐减弱.  相似文献   

12.
13.
Turbulent flow of an incompressible fluid in a plane channel with parallel walls is considered. The three-dimensional time-dependent Navier-Stokes equations are solved numerically using the spectral finite-difference method. An artificial force which completely suppresses lateral oscillations of the velocity is introduced in the near-wall zone (10 % of the channel half-width in the neighborhood of each wall). Thus, the three-dimensional flow zone, in which turbulent oscillations can develop, is separated from the wall by a fluid layer. It is found that the elimination of three-dimensionality in the neighborhood of the walls leads to a significant reduction in the drag. However, complete laminarization does not occur. The flow in the stream core remains turbulent and can be interpreted as a turbulent flow in a channel with walls located on the boundary of the two-dimensional layer and traveling at the local mean-flow velocity. The oscillations developing inside the two-dimensional layer, which have significant amplitude, distort the flow only in the adjacent zone. Beyond this zone the distributions of the mean characteristics and the structure of instantaneous fields completely correspond to ordinary turbulent flow in a channel with rigid walls. The results obtained confirm the hypothesis of the unimportance of the no-slip boundary conditions for the fluctuating velocity component in the mechanism of onset and self-maintenance of turbulence in wall flows.  相似文献   

14.
In this paper, a direct numerical simulation of particle-laden flow in a flat plate boundary layer is performed, using the Eulerian–Lagrangian point-particle approach. This is, as far as we know, the first simulation of a particle-laden spatially-developing turbulent boundary layer with two-way coupling. A local minimum of the particle number density is observed in the close vicinity of the wall. The present simulation results indicate that the inertial particles displace the quasi-streamwise vortices towards the wall, which, in turn, enhance the mean streamwise fluid velocity. As a result, the skin-friction coefficient is increased whereas the boundary layer integral thicknesses are reduced. The presence of particles augments the streamwise fluctuating velocity in the near-wall region but attenuates it in the outer layer. Nevertheless, the wall-normal and spanwise velocity fluctuations are significantly damped, and so is the Reynolds stress. In addition, the combined effect of a reduced energy production and an increased viscous dissipation leads to the attenuation of the turbulent kinetic energy.  相似文献   

15.
本文采用时间解析的二维粒子图像测速技术,对零压力梯度光滑以及汇聚和发散沟槽表面平板湍流边界层统计特性和流动结构进行了研究.结果表明在垂直于汇聚和发散沟槽表面的对称平面内,相对于光滑壁面,发散沟槽壁面使当地边界层厚度、壁面摩擦阻力、湍流脉动、雷诺应力等明显减小;而汇聚沟槽壁面对湍流边界层特性和流动结构的影响正好相反,汇聚沟槽使壁面流体有远离壁面向上运动的趋势,因而导致边界层厚度增加了约43%;同时,在汇聚沟槽表面情况下流向大尺度相干结构更容易形成,这对减阻是不利的.此外,顺向涡数量在湍流边界层的对数区均存在一个极大值,发散沟槽表面所对应的极大值位置更靠近沟槽壁面,而在汇聚沟槽表面则有远离壁面的趋势,由顺向涡诱导产生的较强的喷射和扫掠运动会在湍流边界层中产生较强的剪切作用,顺向涡数量的减少是发散沟槽壁面当地摩擦阻力降低的主要原因.  相似文献   

16.
宋晓阳  及春宁  许栋 《力学学报》2015,47(2):231-241
利用直接数值模拟、点球浸入边界法和颗粒离散元法相结合的方法, 模拟了颗粒在明渠湍流边界层中的运动, 并对颗粒的瞬时位置进行了Voronoi 分析, 定量研究了颗粒在湍流边界层中的运动和分布规律. 研究发现:颗粒的输运对湍流的统计特征有影响, 其运动与近壁区湍流拟序结构密切相关, 在"喷发"结构作用下被带离壁面, 在"扫掠" 结构和自身重力作用下回到壁面; 在湍流边界层中, 颗粒倾向于聚集在低流速带, 呈条带状分布;颗粒在大部分时间处于"簇"状态, 偶尔跳跃到"空" 状态, 但能够很快回到邻近低速区域.   相似文献   

17.
Many theoretical and experimental papers [1–4] have been devoted to investigating the turbulent boundary layer in the initial section of a channel. For the most part, however, the flow of an incompressible fluid with constant parameters is considered. There are many practical cases in which it is of interest to treat the development of the turbulent boundary layer of gas in the initial section of a pipe when conditions are strongly nonisothermal. A solution of a problem of this type, based on the theory of limit laws, is given in paper [1]. The present article extends this solution to the case of the flow of a high-enthalpy gas when the effect of gas dissociation on the turbulent boundary layer characteristics must be taken into account. We shall consider the flow of a mixture of i gases which is in a frozen state inside the boundary layer, and in an equilibrium state on its boundaries. Formulas are derived for the laws of friction and heat exchange, and a solution is given for the turbulent boundary layer equations in the initial section of the pipe when the wall temperature is constant and the gas flows at a subsonic velocity.Finally the authors are grateful to S. S. Kutateladze for discussing the paper.  相似文献   

18.
Experiments were conducted in a wind tunnel to assess the effect of a moving wall on a fully developed, equilibrium turbulent boundary layer. Pitot-static and total head probes were used in conjunction with both single- and two-component hot-wire anemometer probes to quantify the effect of wall motion on the boundary layer velocity statistics. A variable speed, seamless belt formed the wind tunnel test section wall. When stationary, the belt was found to possess a fully developed, equilibrium turbulent boundary layer in excellent agreement with archival data. With the tunnel wall moving at the free-stream speed, and at a sufficient distance above the wall, the velocity statistics in the moving-wall boundary layer were found to collapse well when scaled as a self-preserving turbulent wake. The near-wall mean velocity profile of the moving wall was found to exhibit an extended region of linearity compared to canonical turbulent boundary layer and internal flows. This can be attributed to the reduced shear resulting from wall motion and the subsequent reduction in Reynolds stress. Received: 2 June 1999/Accepted: 8 August 2000  相似文献   

19.
An experimental investigation of unsteady-wake/boundary-layer interaction, similar to that occurring in turbomachinery, has been conducted in a specially modified wind tunnel. Unsteadiness in a turbomachine is periodic in nature, due to the relative motion of rotor and stator blades, resulting in travelling-wave disturbances that affect the blade boundary layers. In the experimental rig, travelling-wave disturbances were generated by a moving airfoil apparatus installed upstream of a flat plate to provide a two-dimensional model of a turbomachine stage. The boundary layer on the flat plate was tripped near the leading edge to generate a turbulent flow prior to interaction with the wakes, and measurements of velocity throughout the boundary layer were taken with a hot-wire probe. The Reynolds number, based on distance along the plate, ranged from 0.144×105 to 1.44×105, and all data were reduced through a process of ensemble averaging. Due to the nonlinear interactions with the boundary layer, the travelling discrete frequency wakes were found to decrease the shape factor of the velocity profile and to increase the level of turbulent fluctuations. Unlike the phase advance found with stationary-wave external disturbances, velocity profiles subject to the travelling wake fluctuations exhibited increasingly negative phase shifts from the free-stream towards the wall.  相似文献   

20.
周期性扰动在湍流边界层中沿法向的衰减   总被引:3,自引:1,他引:2  
王昕  姜楠  舒玮 《实验力学》2001,16(3):270-275
在开口式循环水槽底部湍流边界层外区中引入周期性扰动,利用X型热膜探针对下游扰动进行测量。研究了湍流边界层中周期性人工扰动对湍流结构的影响,获得了人工扰动在湍流边界层中沿法向的衰减趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号