首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
2.
A procedure is presented for predicting the fatigue behavior at elevated temperature by extending the unified theory of fatigue damage previously proposed for room temperature. The method predicts the experimental results of high-temperature push-pull tests under isothermal conditions, using the total strain range. The analysis is based on parameters obtained from short-term tensile tests in which the temperature and the strain rate are the same as for the fatigue test. The procedure is applied for fatigue of a stainless steel at 650°C under cyclic axial strain. It has also been applied to published data for three austenitic stainless steels. In general, the present procedure gives estimates closer to experimental results than those obtained from other known methods.  相似文献   

3.
A measuring apparatus using reluctance-type displacement transducers was successfully used for measuring radial thermal strains in 1-in.-diam × 8-in.-long thin-walled tubes of molybdenum, tantalum and 304 stainless steel. Wall-temperature rates of approximately 300° F/sec were accomplished by rapid heating with a plasma jet and strains at temperatures up to 2500° F were recorded. Excellent agreement between experimental results and a theoretical solution based on temperature profiles was found for temperatures to 2000° F.  相似文献   

4.
The tensile behaviour of two types of viscoelastic bituminous films confined between mineral aggregates or steel as adherends, was investigated in the brittle and ductile regimes. Uniaxial specimens were fabricated employing a prototype set up allowing construction of micro-scale thin films and visualization of failure phenomena. The effect of key parameters, namely, temperature (23°C and −10°C), binder type (straight run and polymer modified), adherend type (stainless steel and mineral aggregate), and water conditioning were investigated sequentially. The results show that water sensitive aggregate-binder combinations in macro (150 mm diameter) and mega (in service) scales also displayed reduced tensile strength in the micro scale when water conditioned. At 23°C ductile failure and at −10°C brittle fracture were observed. At 23°C phenomena, such as formation of striations during tensile mechanical loading, void nucleation and growth, filamentation and large ductile flow before fracture could be witnessed. When using proper surface preparation procedures, in all types of specimen investigated at 23°C only cohesive failure and at −10°C predominantly adhesive-cohesive failure were found.  相似文献   

5.
In this study, slow strain rate tensile testing at elevated temperature is used to evaluate the influence of temperature and strain rate on deformation behaviour in two different austenitic alloys. One austenitic stainless steel (AISI 316L) and one nickel-base alloy (Alloy 617) have been investigated. Scanning electron microscopy related techniques as electron channelling contrast imaging and electron backscattering diffraction have been used to study the damage and fracture micromechanisms. For both alloys the dominante damage micromechanisms are slip bands and planar slip interacting with grain bounderies or precipitates causing strain concentrations. The dominante fracture micromechanism when using a slow strain rate at elevated temperature, is microcracks at grain bounderies due to grain boundery embrittlement caused by precipitates. The decrease in strain rate seems to have a small influence on dynamic strain ageing at 650°C.  相似文献   

6.
The nondestructive testing technique is applied to evaluate the temper embrittlement of normalized and tempered steel; it is based on the anodic polarization behavior in calcium nitrate solution. The steel specimen is aged at a stress of 210 MPa at 450°C for up to 8800 h in order to examine the effect of applied stress on the enhancement of intergranular segregation of phosphorus. The secondary peak observed in the polarization curve for the material aged under stress was compared with that for the non-stressed. It can be quantified with the degree of intergranular segregation of phosphorus. The data suggest that the enhancement of phosphorus segregation due to the applied stress is only recognized after 3000 h of aging. This effect diminishes with increasing aging time.  相似文献   

7.
This paper presents results from a numerical and experimental research programme motivated by the need to predict creep damage generated by multi-axial states of stress in austenitic stainless steels. It has been hypothesized that highly triaxial residual stress fields may be sufficient to promote creep damage in thermally aged components, even in the absence of in-service loads. Two prerequisites to test this hypothesis are the provision of test specimens containing a highly triaxial residual stress field and an accurate knowledge of how this residual stress field relaxes due to creep. Creep damage predictions may then be made for these specimens and compared to damage observed in experiments. This paper provides solutions to both of these prerequisites. Cylindrical and spherical test specimens made from type 316H stainless steel are heated to 850 °C and then quenched in water. Finite element predictions of the residual stress state, validated by extensive neutron diffraction measurements, are presented which confirm the high level of triaxiality present in the specimens. The specimens are then thermally aged at 550 °C and numerical predictions of the residual stress relaxation are given, again validated by extensive neutron diffraction measurements. The results confirm the validity of the creep relaxation models employed. In addition, the results show the influence of specimen size and permit comparisons to be made between three different types of neutron diffractometers.  相似文献   

8.
新型奥氏体不锈钢的耐磨性研究   总被引:1,自引:0,他引:1  
为了解决传统奥氏体不锈钢耐磨性较差的问题,本文设计了一种新型的Fe-Mn-Si-Cr-M-C奥氏体不锈钢,并研究了其耐磨性能和耐腐蚀性能.研究表明:Fe-Mn-Si-Cr-Ni-C奥氏体不锈钢在干摩擦和油润滑条件下均具有比1Cr18Ni9Ti奥氏体不锈钢更好的耐磨性,在NaCl中耐蚀性不如1Cr18Ni9Ti不锈钢,但在NaOH中优于1Cr18Ni9Ti不锈钢.Fe-Mn-Si-Cr-Ni-C奥氏体不锈钢应力作用下发生的应力诱发γ→ε马氏体相变是其具有较高耐磨性的原因.  相似文献   

9.
The ultrafast cooling that occurs during high mass flux air-atomized spray impingement on a hot 6 mm thick stainless steel plate has been studied experimentally in terms of the nozzle inclination between 0° and 60°. The average mass flux of water used in the study accounts to 510 kg/m2 s. The coolants used in the study are pure water and surfactant water of 600 ppm concentration. The initial temperature of the plate has been maintained at 900 °C, which is the temperature of a hot strip on run-out table in steel industry. The transient surface heat flux and temperature histories have been estimated by an inverse heat solver using measured temperature input data. Heat transfer results demonstrates that optimum cooling efficiency (~2.76 MW/m2, 194 °C/s) for pure water has been achieved at 30° nozzle orientation. The inclined nozzle has not been found beneficial when surfactant water is used as the coolant.  相似文献   

10.
The time-dependent strain cyclic characteristics and ratchetting behaviours of SS304 stainless steel were investigated by uniaxial/multiaxial cyclic loading tests at room and elevated temperatures (350 and 700 °C). The effects of loading rate, peak/valley strain or stress holds, ambient temperature and non-proportional loading path on the cyclic softening/hardening and ratchetting behaviours of the material were discussed. It is shown that: the cyclic deformation of the material presents remarkable time-dependence at room temperature and 700 °C; the cyclic hardening feature and ratchetting strain depend significantly on straining or stressing rate, hold-time, ambient temperature and the non-proportionality of loading path; the time-dependent ratchetting is resulted from the slight opening of hysteresis loop and visco-plasticity together, and the viscosity is a dominating factor at 700 °C; at 350 °C, abnormal rate-dependence and quick shakedown of ratchetting are observed due to the dynamic strain aging of the material at this temperature. Some significant conclusions are obtained, which are useful to construct a constitutive model to describe the time-dependent ratchetting behaviour of the material. It is also stated that the unified visco-plastic constitutive model discussed here cannot provide reasonable simulation to the time-dependent ratchetting at 700 °C, especially to that with certain peak/valley stress hold, since the effect of the high viscosity on time-dependent ratchetting cannot be properly described by using a unified visco-plastic flow rule.  相似文献   

11.
Due to the strain-induced martensitic transformation which occurs during plastic deformation, a transformation-induced plasticity (TRIP) phenomenon is generated. With the TRIP phenomenon, the TRIP steel possesses favorable mechanical properties such as high strength, ductility and toughness, and is frequently employed as a structural material. In the past, several researchers clarified experimentally that the strain-induced martensitic transformation and the deformation behavior of TRIP steel depend upon the austenitic grain size. In order to obtain the expected mechanical properties of TRIP steel through control of the austenitic grain size, prediction and control of the material characteristics in the deformation processes is essential. Here, the new strain-induced martensitic transformation kinetics model and constitutive equation of TRIP steels are proposed by considering the dependence of the austenitic grain size. Then, the deformation behavior of a type 304 austenitic stainless steel cylinder is simulated under different environmental temperatures with the various austenitic grain sizes by the finite-element method along with newly-proposed constitutive equations. Finally, the validity of proposed constitutive equations and the possibility of the improvement of the mechanical properties through control of the austenitic grain size are discussed.  相似文献   

12.
The recrystallization technique has been extended for direct observation of plastic zone in Type 304 stainless steel in the temperature range of ?196° to 950°C. It can reveal plastic deformation with plastic strain above 0.02 in the range of ?196° to 850° C and that with plastic strain above 0.06 at 950°C. Results of plastic-zone observation in notched specimen in the range of ?196° to 950° C are presented to illustrate the technique's capability.  相似文献   

13.
S30408奥氏体不锈钢因其优异的力学性能和耐低温性能而被广泛用于制作LNG等低温罐车罐体的内容器。此类罐体的内容器在其支撑部位不但承受内压引起的恒定应力还会承受惯性载荷引起的交变应力,容易发生渐进的塑性应变累积即棘轮效应。但目前还缺乏有效预测S30408低温棘轮效应的本构描述。利用几种较为先进的本构模型对低温S30408奥氏体不锈钢棘轮应变进行模拟,发现这些本构模型存在循环初期过低预测和循环后期过高预测的缺点,并且这种过高预测会随着循环圈数的增加而增大。基于Ohno - Wang II模型,关联形变马氏体含量与各向同性强化与随动强化,并给出马氏体极限含量dL的演化规律,进而提出一种含马氏体相变的循环塑性本构模型。与其它模型相比,该模型能有效改善在循环初期预测值过低和后期预测值过高的情况,同时能够较好地预测循环加载过程中形变马氏体的含量。  相似文献   

14.
在293~873 K的环境下,采用分离式霍普金森杆装置对高氮钢试样进行了102~103 s-1应变率下的动态加载实验。结合准静态实验结果,分析了应变率和温度对材料塑性流动特性的影响。结果表明:高氮钢的动态力学行为具有很强的应变率敏感性和温度敏感性。当应变率达到400 s-1或更高时,流动应力随应变率的增加显著升高;在同一应变率下,流动应力随温度的降低明显升高。研究了温度和应变率耦合效应对材料塑性行为的影响,得出温度软化效应在高氮钢高温动态塑性变形中起主导作用。基于经典的Johnson-Cook(J-C)模型,通过对实验数据的分析,得出了高氮钢材料的修正J-C本构方程,经验证修正J-C方程预测结果与实验结果吻合。  相似文献   

15.
S30408奥氏体不锈钢因其优异的力学性能和耐低温性能而被广泛用于制作LNG等低温罐车罐体的内容器。此类罐体的内容器在其支撑部位不但承受内压引起的恒定应力还会承受惯性载荷引起的交变应力,容易发生渐进的塑性应变累积即棘轮效应。但目前还缺乏有效预测S30408低温棘轮效应的本构描述。利用几种较为先进的本构模型对低温S30408奥氏体不锈钢棘轮应变进行模拟,发现这些本构模型存在循环初期过低预测和循环后期过高预测的缺点,并且这种过高预测会随着循环圈数的增加而增大。基于Ohno - Wang II模型,关联形变马氏体含量与各向同性强化与随动强化,并给出马氏体极限含量dL的演化规律,进而提出一种含马氏体相变的循环塑性本构模型。与其它模型相比,该模型能有效改善在循环初期预测值过低和后期预测值过高的情况,同时能够较好地预测循环加载过程中形变马氏体的含量。  相似文献   

16.
A series of experiments is described in which specimens of AISI 4340 VAR steel are deformed in shear at temperatures ranging from −190°C.to 20°C. The tests were performed in a torsional Kolsky (split-Hopkinson) bar at quasistatic and dynamic strain rates. Before testing, all the specimens were normalized, austenitized and tempered to hardnesses of 55, 44 or 33, on the Rockwell C scale. In addition to constant temperature and constant strain rate tests, a number of experiments were performed to study strain rate and temperature history effects in these three tempers. For this purpose a prestrain was imposed at one temperature and strain rate, followed by continued straining at a new temperature or at a new strain rate.Results provide stress-strain curves in shear for the three tempers of this steel. Temperature effects appear greater between −190°C and −50°C than between −50°C and room temperature, particularly for the 200°C temper, while the strain rate sensitivity is about the same as found in mild steel. History effects are quite small for the 600°C and 425°C tempers, even at large strains. However, for the 200°C temper a prestrain at −50°C followed by a temperature change to −190°C requires a higher flow stress than does deformation imposed entirely at the lower temperature. Anomalous history effects of this nature have been seen before in steels, although this is the first evidence for their association with a particular temper.  相似文献   

17.
Spatially resolved measurement of creep deformation across weldments at high temperature cannot be achieved using standard extensometry approaches. In this investigation, a Digital Image Correlation (DIC) based system has been developed for long-term high-temperature creep strain measurement in order to characterise the material deformation behaviour of separate regions of a multi-pass weld. The optical system was sufficiently stable to allow a sequence of photographs to be taken suitable for DIC analysis of creep specimens tested at a temperature of 545 °C for over 2000 h. The images were analysed to produce local creep deformation curves from two cross-weld samples cut from contrasting regions of a multi-pass V-groove weld joining thick-section AISI Type 316H austenitic stainless steel. It is shown that for this weld, the root pass is the weakest region of the structure in creep, most likely due to the large number of thermal cycles it has experienced during the fabrication process. The DIC based measurement method offers improved spatial resolution over conventional methods and greatly reduces the amount of material required for creep characterisation of weldments.  相似文献   

18.
为了研究不锈钢渗铜层的纳米力学性能,本文采用等离子表面合金化技术在304不锈钢表面制备了渗铜层。利用纳米压入硬度仪,采用连续刚度测试法,对渗铜层以及不锈钢基体的表面和横截面的纳米力学性能进行了测试,得到了纳米压入过程的载荷-压入深度曲线,发现渗铜层抵抗外载荷的能力低于不锈钢基体。并得到了渗铜层和不锈钢基体的表面、横截面方向的硬度以及杨氏模量,经对比得到渗铜层的杨氏模量和硬度都要比不锈钢基体的低,并且渗铜层的力学性能表现出各向异性。对纳米压入的数据进行分析,发现渗铜层在小尺度压入时硬度和杨氏模量表现出明显的"尺度效应"。  相似文献   

19.
This paper presents experiments to determine the residual stresses generated during the low-speed quenching of austenitic stainless steel. Austenitic stainless steel was chosen because it does not undergo any phase transformation during quenching. As a result, the resultant residual-stress pattern depends only on plastic deformation taking place during the quench. Different quenching rates were used in the experiment to quantify their effect on the generation of residual stresses. These stresses were measured along the surface of the specimen in a direction parallel to the quench direction and in depth below the surface.  相似文献   

20.
Previous investigations on the effects of strain-rate and temperature histories on the mechanical behavior of steel are briefly reviewed. A study is presented on the influence of strain rate and strain-rate history on the shear behavior of a mild steel, over a wide range of temperature Experiments were performed on thin-walled tubular specimens of short gage length, using a torsional split-Hopkinson-bar apparatus adapted to permit quasi-static as well as dynamic straining at different temperatures. The constant-rate behavior was first measured at nominal strain rates of 10?3 and 103 s?1 for ?150, ?100, ?50, 20, 200 and 400°C. Tests were then carried out, at the same temperatures, in which the strain rate was suddenly increased during deformation from the lower to the higher rate at various large values of plastic strain. The increase in rate occurred in a time of the order of 20 μs so that relatively little change of strain took place during the jump. The low strain-rate results show a well-defined elastic limit but no yield drop, a small yield plateau is found at room temperature. The subsequent strain hardening shows a maximum at 200°C, when serrated flow occurs and the ductility is reduced. The high strain-rate results show a considerable drop of stress at yield. The post-yield flow stress decreases steadily with increasing temperature, throughout the temperature range investigated. At room temperature and below, the strain-hardening rate becomes negative at large strains. The adiabatic temperature rise in the dynamic tests was computed on the assumption that the plastic work is entirely converted to heat. This enabled the isothermal dynamic stress-strain curves to be calculated, and showed that considerable thermal softening took place. The initial response to a strain-rate jump is approximately elastic, and has a magnitude which increases with decrease of testing temperature; it is little affected by the amount of prestrain. At 200 and 400° C, a yield drop occurs after the initial stress increment. The post-jump flow stress is always greater than that for the same strain in a constant-rate dynamic test, the strain-hardening rate becoming negative at large strains or low testing temperature. This observed effect of strain-rate history cannot be explained by the thermal softening accompanying dynamic deformation. These and other results concerning total ductility under various strain-rate and temperature conditions show that strain-rate history strongly affects the mechanical behavior of the mild steel tested and, hence, should be taken into account in the formulation of constitutive equations for that material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号