首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The fatigue and damage tolerance behaviour of pre-corroded 2024 T351 aluminum alloy specimens has been investigated and compared to the behaviour of the uncorroded material. The experimental investigation was performed on specimens pre-corroded in exfoliation corrosion environment and included the derivation of S–N and fatigue crack growth curves as well as measurements of fracture toughness. The fatigue crack growth tests were performed for different stress ratios R. To obtain reference material behaviour all mechanical tests were repeated under the same conditions for uncorroded specimens. For the corroded material an appreciable decrease in fatigue resistance and damage tolerance was obtained. The results of the experimental investigation were discussed under the viewpoint of corrosion and corrosion-induced hydrogen embrittlement of the 2024 aluminum alloy. The need to account for the influence of pre-existing corrosion on the material’s properties in fatigue and damage tolerance analyses of components involving corroded areas was demonstrated.  相似文献   

2.
Gigacycle fatigue behaviors of two SNCM439 steels with different tensile strengthes were experimentally studied by rotating bending tests,to investigate the effects of the tensile strength obtained by different heat treatment processes on very high cycle fatigue failure mechanisms.The material with higher tensile strength of 1 710 MPa exhibited typical gigacycle fatigue failure characteristics,whereas one with lower tensile strength of 1 010 MPa showed only traditional fatigue limit during the tests and no gigacycle failure could be found even when the specimen ran up to more than 10 8 cycles.Metallographic and fractographic analysis were carried out by an optical microscope (OM) and scanning electron microscope (SEM).It showed two different crack initiation mechanisms that for the specimen with lower tensile strength the crack prefers surface initiation and for that with higher strength the crack initiates from subsurface inclusions revealed by a fish-eye like microstructure.  相似文献   

3.
采用微机控制激光散斑干涉技术,原位研究了结构钢单边缺口预裂纹试样在3.5%Nad水溶液中,-1400mV(SCE)电位下阴极完氢6小时前后,裂尖材料形变行为的变化。同时,还对充氢与未充氢条件下光滑圆柱试样的应力-应变行为进行了对比研究,用扫描电镜观察了断口形貌。结果表明:由于氢的进入,使材料的加工硬化程度加剧,从而导致了变形困难。  相似文献   

4.
In this paper, a vibration-based testing methodology to assess fatigue behavior of a metallic structure is presented. To minimize the testing duration, the test setup is designed for a base-excited multiple-specimen arrangement driven in a high-frequency resonant mode, which allows completion of fatigue testing in an accelerated period. The shaker operates in closed-loop control with dynamic specimen response feedback provided by a scanning laser vibrometer. A test coordinator function is developed to synchronize the shaker controller and the laser vibrometer and complete the closed-loop scheme: the test coordinator monitors structural health of the test specimens throughout the test period, recognizes change in specimen dynamic behavior due to fatigue crack initiation, terminates test progression, and acquires test data in an orderly manner. The test methodology is demonstrated with cantilever specimens that are clasped on the shaker armature with specially-designed clamp fixtures. Experimental stress evaluation is carried out to verify the specimen stress predictions. A successful application of the experimental methodology is demonstrated by validation tests with Al 6061-T6 aluminum specimens subjected to fully-reversed bending stress.  相似文献   

5.
Experiments performed on a ten-member redundant “fail-safe” structural model subjected to randomized load sequences confirm predictions of fatigue life and reliability based on a probabilistic approach. The statistical variation in ultimate strength of 2024-T4 aluminum alloy combined with an exponentially distributed, Markovian, bending load-amplitude sequence with a constant-amplitude S-N relation for single specimens, is utilized in the analysis. Experimental results are presented for the statistical distribution of ultimate bending strength of 2024-T4 aluminum alloy. Constant load-amplitude flat-bending fatigue tests on single specimens and on multimember structures, and variable-amplitude flat-bending tests on fail-safe structures are reported. Life to failure of the weakest member, as well as the remaining “fail-safe” life in the parallel structure, are examined.  相似文献   

6.
疲劳裂纹形成、扩展统计特性的大子样试验研究   总被引:1,自引:0,他引:1  
针对疲劳损伤过程的随机性,该文开展了等幅谱大子样疲劳裂纹形成、扩展至破坏全寿命过程的试验研究.在计算确立了裂纹形成、扩展分界工程小裂纹长度的基础上,整理得到了裂纹形成,扩展寿命的统计分布数据.根据断口金相SEM观察,进一步定性分析了疲劳条纹分布的相关性特征.  相似文献   

7.
Additive manufacturing (AM) is a novel and innovative production technology that can produce complex and lightweight engineering products. In AM components, as in all engineering materials, fatigue is considered as one of the principle causes of unexpected failure. In order to detect, localise and characterise cracks in various material components and metals, acoustic emission (AE) is used as a non-destructive monitoring technique. One of the main advantages of AE is that it can be also used for dynamic damage characterisation and specifically for crack propagation monitoring. In this research, we use AE to monitor the fatigue crack growth behaviour of Ti6Al4V components under four-point bending. The samples were produced by means of AM as well as conventional material. Notched and unnotched specimens were investigated with respect to the crack severity and crack detection using AE. The main AE signal parameters –such as cumulative events, hits, duration, average frequency and rise time– were evaluated and indicate sensitivity to damage propagation in order to lead to a warning against the final fracture occurrence. This is the first time that AE is applied in AM components under fatigue.  相似文献   

8.
After finishing 102 replicate constant amplitude crack initiation and growth tests onLyl2-CZ aluminum alloy plate,a statistical investigation of the fatigue crack initiation and growthprocess is conducted in this paper.According to the post-mortem fractographic examination by scan-ning electron microscopy (SEM),some qualitative observations of the spacial correlation among fa-tigue striations are developed to reveal the statistical nature of material intrinsic inhomogeneity duringthe crack growth process.From the test data,an engineering division between crack initiation andgrowth is defined as the upper limit of small crack.The distributions of crack initiation life N.,growthlife N,and the statistical characteristics of crack growth rate da/dN are also investigated.It is hopedthat the work will provide a solid test basis for the study of probabilistic fatigue,probabilistic fracturemechanics,fatigue reliability and its engineering applications.  相似文献   

9.
Conclusions We constructed an analytical model of the loading of a specimen with a fatigue crack.We also designed instruments to detect a signal proportional to the change in the compliance (stiffness) of the test specimen.An instrument system was also developed to record the kinetics of cracks during long fatigue tests.Examination of the system in preliminary tests showed it to be highly reliable, providing stable readings of the parameters being recorded.A method was devised for experimentally studying the kinetics of fatigue fracture of specimens of alloy EP718ID and a cycle of tests was conducted. It was shown that life of the specimen after the formation of a fatigue crack depends on the level of the cyclic stresses and stress concentration.Deceased.S. P. Timoshenko Institute of Mechanics, National Academy of Sciences of Ukraine, Kiev. Translated from Prikladnaya Mekhanika, Vol. 31, No. 12, pp. 66–74, December, 1995.  相似文献   

10.
本文对温度影响下应用应力波监测钛合金CT试件中的疲劳裂纹进行了研究。建立了由MTS材料试验机和温控箱组成的实验装置,模拟温度变化对应力波在钛合金试件中传播的影响。采用PZT压电元件分别在试件中激励和接收应力波信号。通过连续小波分析,提取应力波信号的多种特征用于表征疲劳裂纹的发生与发展,并对信号特征进行了统计分析。为在温度变化下监测钛合金试件中的疲劳裂纹,对信号特征进行多元偏值分析,采用马氏平方距离融合多个信号特征,在概率统计意义下确定钛合金试件中是否存在疲劳裂纹。实验结果表明了所提出方法的可行性和有效性。  相似文献   

11.
Very high cycle fatigue (VHCF) properties of a low temperature tempering bearing steel GCr15 with smooth and hole-defect specimens are studied by employing a rotary bending test machine with frequency of 52.5 Hz. Both smooth and hole-defect specimens break in VHCF regime with some difference in fatigue crack initiation. For smooth specimens, a fine granular area (FGA) is observed near the grain boundary in the fracture surface of the specimens broken after 107 cycles. But no FGA is observed in the hole-defect specimens broken in VHCF regime, and the VHCF crack does not initiate from the small hole at the surface as it does at low or high cycle fatigue regime. Internal stress is employed to explain the VHCF behavior of these two types of specimens. At last, an advanced dislocation model based on Tanaka and Mura model is proposed to illustrate the internal stress process and to predict fatigue crack initiation life with FGA observed in the fracture region.  相似文献   

12.
本文利用一种自行设计的微动疲劳实验装置研究CrMoV合金钢的微动疲劳特性。作者研究了接触压力对材料微动疲劳寿命的影响规律,得到了研究条件下CrMoV合金钢的接触压力阈值。当接触压力较小时,微动桥压块与试件表面间有相对滑动,微动疲劳寿命随接触压力的增加快速下降;当接触压力达到或超过阈值62.5MPa时,微动疲劳寿命达到最低值并不再随接触压力的增加而下降。本文给出了CrMoV合金钢在接触压力为225MPa的微动疲劳曲线和零接触压力(纯)疲劳曲线,并给出微动疲劳强度与常规疲劳强度的关系,分析了微动疲劳破坏的微观机理。  相似文献   

13.
In ball grid array (BGA) packages, solder balls are exposed to cyclic thermo-mechanical strains arising from the thermal mismatch between package components. Thermo-mechanical fatigue crack propagation in solder balls is almost always observed at the chip side of the bump/pad junction. The objective of the experimental part of this study is to characterize the bump/pad interface under fatigue loading. Fatigue specimens are prepared by reflowing Sn3.8Ag0.5Cu lead-free solder alloy on Ni/Au substrates. Obtained results show that fatigue damage evolution strongly depends on the microstructure. Applied strain and solder volume both have an influence on the fatigue damage mechanism. In the numerical part of the study, fatigue experiments are modeled using the finite element technique. A cohesive zone approach is used to predict the fatigue damage evolution in soldered connections. Crack propagation is simulated by an irreversible linear traction–separation cohesive zone law accompanied by a non-linear damage parameter. Cohesive zone elements are placed where failure is experimentally observed. Damage evolution parameters for normal and tangential interaction are scrutinized through dedicated fatigue tests in pure tensile and shear directions. The proposed cohesive zone model is quantitatively capable of describing fatigue failure in soldered joints, which can be further extended to a numerical life-time prediction tool in microelectronic packages.  相似文献   

14.
确定某型飞机机翼主梁结构的使用寿命是保证该机使用安全的关键。本文对全机第一关键危险部位--机翼钛合金主梁下缘螺栓孔模拟件进行随机谱和程序块谱载荷下的疲劳寿命试验,获得了模拟件的疲劳裂纹形成寿命和疲劳全寿命,并对其寿命进行了统计处理和对比分析。结果表明,程序块谱较随机谱有更长的疲劳寿命。这说明随机谱比程序块谱要严重,对钛合金主梁模拟件的疲劳寿命有显著的影响。该结论可为机翼钛合金主梁构件疲劳寿命预测及疲劳设计提供试验依据。  相似文献   

15.
In this paper, a special bending fatigue experiment was firstly performed to investigate the fatigue behavior of polyethylene methacrylate in adhesive assembly. Fatigue lifetime property (S–N curve) was obtained. Finite element calculations on the whole structures also gave the same results with the testing. Based on the experimental data and finite element analysis, a local stress law of predicting bending fatigue lifetime was put forward. The predication lifetime for the polyethylene methacrylate agreed well with the experimental results. Following the strain energy density (SED) criterion was applied to predict the crack initiation and growth path of the adhesive assembly. The predicted results were in good agreement with the optical microscopy (OM) failure image of the failure specimen. SEM image of fracture further showed that there were lots of parallel fatigue lines with perpendicularity to the direction of crack, and an obvious boundary from the crack propagation failure to final brittle fracture.  相似文献   

16.
Three-dimensional crack closure correction methods are investigated in this paper.The fatigue crack growth tests of surface cracks in 14MnNbq steel for bridge plate subjected to tensile and bending loadings are systematically conducted.The experimentally measured fatigue crack growth rates of surface cracks are compared with those of through-thickness cracks in detail.It is found that the crack growth rates of surface cracks are lower than those of through-thickness cracks.In order to correct their differences in fatigue crack growth rates, a dimensionless crack closure correction model is proposed.Although this correction model is determined only by the experimental data of surface cracks under tensile loading with a constant ratio R=0.05, it can correlate the surface crack growth rates with reasonable accuracy under tensile and bending loadings with various stress ratios ranging from 0 to 0.5.Furthermore, predictions of fatigue life and crack aspect ratio for surface cracks are discussed, and the predicted results are also compared with those obtained from other prediction approaches.Comparison results show that the proposed crack closure correction model gives better prediction of fatigue life than other models.  相似文献   

17.
The accuracy of an adopted cohesive zone model (CZM) can affect the simulated fracture response significantly. The CZM has been usually obtained using global experimental response, e.g., load versus either crack opening displacement or load-line displacement. Apparently, deduction of a local material property from a global response does not provide full confidence of the adopted model. The difficulties are: (1) fundamentally, stress cannot be measured directly and the cohesive stress distribution is non-uniform; (2) accurate measurement of the full crack profile (crack opening displacement at every point) is experimentally difficult to obtain. An attractive feature of digital image correlation (DIC) is that it allows relatively accurate measurement of the whole displacement field on a flat surface. It has been utilized to measure the mode I traction-separation relation. A hybrid inverse method based on combined use of DIC and finite element method is used in this study to compute the cohesive properties of a ductile adhesive, Devcon Plastic Welder II, and a quasi-brittle plastic, G-10/FR4 Garolite. Fracture tests were conducted on single edge-notched beam specimens (SENB) under four-point bending. A full-field DIC algorithm was employed to compute the smooth and continuous displacement field, which is then used as input to a finite element model for inverse analysis through an optimization procedure. The unknown CZM is constructed using a flexible B-spline without any “a priori” assumption on the shape. The inversely computed CZMs for both materials yield consistent results. Finally, the computed CZMs are verified through fracture simulation, which shows good experimental agreement.  相似文献   

18.
High-temperature mechanical behavior of ceramics is characterized by non-linear rate dependent responses, asymmetric behavior in tension and compression, and nucleation and coalescence of voids leading to rupture. Moreover, rupture experiments show considerable scatter or randomness in fatigue lives of nominally equal specimens. To capture the non-linear, asymmetric time-dependent behavior, a new non-linear viscoelastic model is proposed. Non-linearity and asymmetry are introduced in the volumetric component. To model the random formation and coalescence of voids, each element is assigned a failure strain sampled from a lognormal distribution. An element is deleted when its volumetric strain exceeds its failure strain. Temporal increases in strains produce a sequential loss of elements (a model for void nucleation and growth), which in turn leads to failure. Non-linear viscoelastic model parameters are determined from uniaxial tensile and compressive creep experiments on silicon nitride. The model is then used to predict the deformation of four-point bending and ball-on-ring specimens. Simulation is used to predict statistical moments of rupture lives. Numerical simulation results compare well with results of four-point bending experiments.  相似文献   

19.
In this paper, we propose a new experimental method to investigate the fatigue crack growth mechanisms of submicron-scale cracks by using freestanding single edge notched micro-beams that are fabricated on the surfaces of conventional bending specimens with the focused ion beam technique. Three dimensional FEM simulations in conjugate with LEFM fracture analysis were carried out to correlate the applied far field stresses with the local crack-tip driving force. For the validation of the new method, micro-beam experiments were conducted on 4340 low alloy steels and the results showed the similar findings compared to those in the literature while revealed undiscovered fatigue damage mechanisms that took place at the submicron and nanometer scales.  相似文献   

20.
This paper aims to report the results of an experimental study on the application of piezoelectric dynamic strain sensors for crack length measurement in fracture mechanics specimens. The performance of the piezoelectric sensors was assessed through fatigue crack propagation tests in compact tension (CT) specimens. Sensors of polarized polyvinilidene fluoride polymer (PVDF) were bonded to the back face of CT specimens, in the same manner as the electrical resistance strain gages installed for crack length measurement in the back face strain technique. The results showed that, mainly due to its high sensitivity to strain, the use of piezoelectric materials as dynamic strain sensors can contribute to the experimental investigation in the field of fracture mechanics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号