首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alkali-induced enhancement of surface electronic polarizibility   总被引:1,自引:0,他引:1  
From results of ab initio electronic structure calculations based on density functional theory for a set of prototype systems, we find alkali adsorbates to cause a dramatic enhancement of the electronic polarizability of the metal surface extending it several angstroms into the vacuum. This phenomenon is traceable to an unusual feature induced in the surface potential on alkali adsorption. The effect appears to be general, as we find it to be present on metals as varied as Pd and Cu, and helps explain the observed substantial decrease in the vibrational frequency of molecules when coadsorbed with alkalis on metal surfaces. Specifically, for two dissimilar molecules CO and O(2), we trace the softening of the frequencies of their stretching mode when coadsorbed with K on Pd(111) to the enhanced electronic polarizability.  相似文献   

2.
Surface chemistry of carbon dioxide   总被引:5,自引:0,他引:5  
The review discusses how CO2 surface chemistry has developed since the early 1950s. Emphasis is given to studies of well-characterized surfaces of metals, oxides and some more complex systems involving in particular alkali modified surfaces and also of coadsorbed molecules.  相似文献   

3.
We present results of ab initio electronic structure calculations based on density functional theory which show in detail several effects of alkali adsorption on metal substrates and on molecules coadsorbed on the substrate. First, calculations of the isoelectronic reactivity index demonstrate a dramatic enhancement of the electronic polarizability of the metal substrate extending it several angstroms into the vacuum. This phenomenon is traceable to an unusual feature induced in the surface potential on alkali adsorption. The effect appears to be general and helps explain the observed substantial decrease in the vibrational frequency of molecules such as CO and O2 when co-adsorbed with alkalis on metal surfaces. Next, for the oxidation of CO on Pd(111), we illustrate the changes in the reaction pathway and activation energy barriers induced in the presence of coadsorbed K. PACS 73.20.-r; 71.15.-m  相似文献   

4.
Optical properties of phosphorene are tuned by adsorption of alkali metals (Li and Na) and halogens (Br and Cl). It has been found that on increasing the size of alkali metals and halogen adsorbed phosphorene layer the absorption coefficient reduces and shifts towards visible region. The refractive index in alkali metal adsorbed phosphorene increases with size of phosphorene layer. For halogen adsorbed structure it decreases with increase in size of phosphorene layer. Optical absorption is observed to depend on both dielectric constant and refractive index. Since adsorption of alkali and halogen materials modifies the refractive index of phosphorene, absorption is seen to reduce in all cases where refractive index increases due to adsorption even when the dielectric constant was high.  相似文献   

5.
An analytical LCAO MO perturbation model has been developed for treating the polarization p-d contributions to the internal surface dipole moments of transition metal surfaces. The results are applied for treating changes in work functions (Ø) under chemisorption. The main conclusions are as follows. (1) Chemisorption of electropositive A (such as alkali metals) will always decrease Ø on all surfaces. (2) Chemisorption of electronegative A (such as H or halogens) can result in either increase or decrease in Ø depending on the nature of A and M. The smallest differences in A vs. M electronegativity are most likely to produce the paradoxical change ΔØ<0. The results obtained agree with experiment.  相似文献   

6.
Microcalorimetric measurements of the adsorption energies of well-defined surface species are reviewed, using selected examples mainly from our own group to demonstrate the types of information that can be achieved with this technique. The adsorption energies of molecules on single crystal transition metal surfaces to produce well-characterized molecular or dissociated adsorbates allow determination of the standard enthalpies of formation of key catalytic reaction intermediates. The adsorption energies for metal atoms during metal thin-film growth allow quantitative estimates of metal-substrate bond energies, metal film/substrate adhesion energies and the energetic costs associated with lattice mismatch during thin film growth. Results for several metals on MgO(1 0 0) reveal that they bind weakly to terrace sites. Metals from the right side of the periodic table also bind weakly to step and kink sites (although more strongly than on terraces), whereas alkali and alkaline earth metals bind very strongly to these defects. At 300 K, metals tend to form 2D or 3D clusters nucleated on MgO(1 0 0) defects, via a transiently adsorbed precursor (mobile adatoms on terraces). Calorimetric measurement of the energy of metal atoms in supported 3D metal nanoparticles as a function of particle size reveals a very strong size dependence below 6 nm diameter. Metal atoms also adsorb weakly on polymer surfaces and nucleate 3D metal particles, sometimes in kinetic competition with migration to and strong reaction with the more reactive, subsurface organic functional groups. Measurements of the energies for adsorbed proteins on calcium phosphate crystals, which have been structurally characterized by NMR, reveal extremely weak binding dominated by the entropy gained from release of organized water. These experimental measurements of the energies of well-defined adsorbates serve as benchmarks against which to compare theoretical computations for accuracy, thus enabling improvement upon quantum mechanical methods. Comparisons of calorimetric adsorption energies on single crystal surfaces with state-of-the-art DFT calculations show that the latter can often be in substantial (?20%) error.  相似文献   

7.
Atomic hydrogen is a highly reactive species of interest because of its role in a wide range of applications and technologies. Knowledge about the interactions of incident H atoms on metal surfaces is important for our understanding of many processes such as those occurring in plasma-enhanced catalysis and nuclear fusion in tokamak reactors. Herein we review some of the numerous experimental surface science studies that have focused on the interactions of H atoms that are incident on low-Miller index metal single-crystal surfaces. We briefly summarize the different incident H atom reaction mechanisms and several of the available methods to create H atoms in UHV environments before addressing the key thermodynamic and kinetic data available on metal and modified metal surfaces. Generally, H atoms are very reactive and exhibit high sticking coefficients even on metals where H2 molecules do not dissociate under UHV conditions. This reactivity is often reduced by adsorbates on the surface, which also create new reaction pathways. Abstraction of surface-bound D(H) adatoms by incident H(D) atoms often occurs by an Eley-Rideal mechanism, while a hot atom mechanism produces structural effects in the abstraction rates and forms homonuclear products. Additionally, incident H atoms can often induce surface reconstructions and populate subsurface and bulk absorption sites. The absorbed H atoms recombine to desorb H2 at lower temperature and can also exhibit higher subsequent reactivity with adsorbates than surface-bound H adatoms. Incident H atoms, either directly or via sorbed hydrogen species, hydrogenate adsorbed hydrocarbons, sulfur, alkali metals, oxygen, halogens, and other adatoms and small molecules. Thus, H atoms from the gas phase incident on surfaces and adsorbed layers create new reaction channels and products beyond those found from interactions of H2 molecules. Detailed aspects of the dynamics and energy transfer associated with these interactions and the important applications of hydrogen in plasma processing of semiconductors are beyond the scope of this review.  相似文献   

8.
Since the adsorption of alkali metals is necessary for the negative electron affinity (NEA) of the photocathode, light absorption models of GaN nanowire (NW) arrays with alkali metal (Li, Na, K, and Cs) nanoparticles (NPs) modified on the NW surface based on the finite difference time domain (FDTD) method are constructed. The absorption spectra of hemispherical, spherical alkali metal NPs adsorbed on the outer surface of the NW, and spherical alkali metal embedded on the inner surface and center of the NW are studied. When the ratio of NW diameter to period (D/P) is greater than 0.5, the adsorption of alkali metal NPs cannot improve the absorption of GaN NW arrays. Alkali metal decoration can cause the absorption gain of NW arrays and optical loss of NPs, so the diameter and spacing of alkali metal NPs need to be balanced. When Li NPs are embedded in NW, plasmons can enhance the generation of electron-hole pairs, making GaN NWA obtain higher optical absorption and quantum efficiency. Therefore, the method of Li and Cs NPs embedded in GaN NW can provide a reference for the process NEA design, which will contribute to the development of the ultraviolet photocathode with high absorption characteristics.  相似文献   

9.
A comprehensive review is given about the enormous versatility of photoelectron spectroscopy to study the especially complex interaction of oxygen with metal surfaces and the nature of the reaction products. The great variety of well definable parameters of a photoemission experiment, e.g. energy, direction of incidence and polarization of the primary photon beam as well as the detection direction of the photocurrent, yields - through the distributions of energy, momentum and spin polarization of the photoelectrons - detailed insight in the kinetic, thermodynamic, electronic and structural aspects of oxygen adsorption on metal surfaces and incipient oxidation. Characteristic electron binding energies, multiplet and satellite structures of both the oxygen and substrate emission allow a distinction between possible states of adsorbed oxygen, i.e. condensed, molecularly and atomically adsorbed, and incorporated oxygen. Even a distinction between octahedral and tetrahedral oxygen coordination of oxide cations may be possible. Analysis of peak intensities (as a measure of coverages and concentrations) as a function of time and temperature provides information about the kinetics and thermodynamics of adsorbed layer and oxide formation. Angular resolved photoemission studies have led to the determination of absolute adsorption site geometries, individual ad-orbital symmetries and two-dimensional band structure formation within the oxygen overlayer. Measurement of the photoelectron spin-polarization offers a method to study surface magnetism, e.g. of ferromagnetic oxides. The determination of local work functions through the photoemission behavior of co-adsorbed rare gas atoms establishes a uniquely important tool to characterize heterogenous surfaces, e.g. oxygenated surfaces with coexisting oxygen states. Numerous different oxygen/metal systems are chosen to demonstrate the state of the art. Results from other surface spectroscopies and theoretical model calculations are, of course, considered and still open problems are named, e.g. the ionicity of the oxygen chemisorption bond. Problems inherent in sputter profiling through surface oxides as observed with photoemission are briefly addressed. This work is rounded by a list of about 600 references in alphabetic order of the reacting metals.  相似文献   

10.
张海峰  李永平  方容川  班大雁 《物理学报》1996,45(12):2047-2053
从理论和实验两个方面对CdTe(111)表面碱金属吸附的电子结构特性进行了研究.实验结果表明碱金属K在CdTe(111)表面吸附是Cd替位吸附,它影响了CdTe(111)表面的表面态分布,产生了费密钉扎现象.在理论方面,首先采用线性糕模轨函数(LMTO)方法对CdTe(111)表面的K吸附电子结构特性作了研究,得出了与实验符合的结果.对碱金属在CdTe(111)表面的吸附电子结构特性系统对比研究表明CdTe(111)表面的碱金属吸附特性不仅受碱金属原子序数的影响,而且与碱金属原子的内层电子组态有关 关键词:  相似文献   

11.
我们采用密度泛函理论下的平面波赝势方法研究Ba和Sr原子在ZnO(0001)表面的吸附结构和性质,仔细研究了三个吸附位(T4, H3 and Top)。发现Ba和Sr吸附在表面的H3和T4位时,他们之间的结合能相差很小,且这两种金属更易于吸附在表面的T4位,我们把计算的结果与贵金属在ZnO(0001)表面的吸附行为及前人的实验结果进行了比较,理论上发现Ag和Au易于吸附在ZnO(0001)表面的H3位,而实验上观察到即使在很小吸附比的条件下ZnO(0001)表面上也能形成Cu的团簇结构,这主要是由于Cu和ZnO(0001)表面衬底强的相互作用所致。  相似文献   

12.
我们采用密度泛函理论下的平面波赝势方法研究Ba和Sr原子在ZnO(0001)表面的吸附结构和性质,仔细研究了三个吸附位(T4, H3 and Top)。发现Ba和Sr吸附在表面的H3和T4位时,他们之间的结合能相差很小,且这两种金属更易于吸附在表面的T4位,我们把计算的结果与贵金属在ZnO(0001)表面的吸附行为及前人的实验结果进行了比较,理论上发现Ag和Au易于吸附在ZnO(0001)表面的H3位,而实验上观察到即使在很小吸附比的条件下ZnO(0001)表面上也能形成Cu的团簇结构,这主要是由于Cu和ZnO(0001)表面衬底强的相互作用所致。  相似文献   

13.
14.
本文介绍了CO分子分别与K原子或Na原子在Fe(110)表面上共吸附的研究。角分辨率紫外光电子能谱(ARUPS)的结果表明,碱金属原子在Fe(110)表面上的存在,紫外光电子能谱中出现了结合能低于通常CO分子1π能级的新峰。该峰位于费密能级以下6.3eV处,是C0在碱金属影响下电子结构改变的结果。该峰的出现对应着CO分子处于C—O键明显减弱的状态。偏振紫外光电子能谱的研究表明:6.3eV处的谱峰联系的电子轨道有一个对称平面和一个反对称平面,分别平行于<001>晶向和<110>晶向。CO分子轨道的对称性不因 关键词:  相似文献   

15.
We have analyzed the magnetic and binding properties of Ni, Cr, Mo, and Pt metals deposited on the defect free and defect containing surfaces of MgO by means of density functional theory calculations and embedded cluster model. Clusters of moderate sizes with no border anions, to avoid artificial polarization effects, were embedded in the simulated Coulomb fields that closely approximate the Madelung fields of the host surfaces. Spin quenching occurs for Cr and Mo complexes at the defect free (terrace) surface, and Cr, Mo, and Pt complexes at the defect containing “pit” divacancy surface. The binding energies of the metals are significantly enhanced on the cationic vacancy end of the divacancy. The adsorption energies of the low spin states of spin quenched complexes are always greater than those of the high spin states. The metal-support interactions stabilize the low spin states of the adsorbed metals with respect to the isolated metals, but the effect is not always enough to quench the spin. The encountered variations in magnetic properties of free metals and of metal complexes are correlated with the energy gaps of the frontier orbitals. Spin contamination affect the adsorbate-substrate distances, Mulliken charges, Mulliken spin densities, natural charge, natural orbital population, and provide rationalization for the reported magnetic and binding properties. The electrostatic potential energy curves provide clearer understanding of the nature of magnetic and binding interactions. The magnetic and binding properties of a single metal atom adsorbed on a particular surface result from a competition between Hund's rule for the adsorbed metal, and the formation of a chemical bond at the interface.  相似文献   

16.
Employing ultraviolet photoelectron spectroscopy (UPS, He I), the more surface sensitive metastable impact electron spectroscopy (MIES) and temperature programmed desorption (TPD) measurements of the adsorption properties of the pollutant trichloroethylene (TCE) on thin MgO(100) films, grown on a Mo(100) single crystal, have been investigated. From TPD spectra of different coverages it is concluded that TCE interacts only weakly with MgO, which is attributed to physisorption. For increasing coverages a change from one peak to two peaks in the TPD spectra, one at higher, the second at lower temperatures with respect to the single peak is detected. Additionally, the observation of a local minimum for the work function (WF) for both MIES and UPS spectra is presented. Such a local minimum has been reported previously for the adsorption of metals with outer s valence electrons on transition metal substrates and adsorption of metals with outer s valence electrons on metal oxide films. Herein, we present the first WF minimum observed for a system of organic molecules adsorbed on an insulating surface. Two different models are discussed in order to understand the presented results.  相似文献   

17.
Single adatom events have been detected and the binding energies and dipole moments of single sodium, potassium and cesium adatoms have been measured on the (110), (112) and (111) planes of tungsten in a probe hole field emission microscope. The Fowler-Nordheim formulation has been modified to include averaging effects implicit in probe hole measurements on single adsorbed atoms. The work function changes and consequent dipole moments associated with single alkali adatoms on a tungsten surface have been estimated. A model has been proposed to obtain binding energies from measurements of the field required to desorb a single alkali adatom. The results are in good agreement with current theoretical predictions for the adsorption of single alkali atoms on metals.  相似文献   

18.
19.
The adsorption of oxygen on W(100) single crystal surfaces is studied by Auger electron spectroscopy (AES), flash desorption, low-energy electron diffraction (LEED) and retarding field work function measurements with the aim of obtaining a better understanding of the adsorption kinetics and of the structures of the adsorbed layer. The AES results reveal step-wise changes of the sticking coefficients in the coverage range 0 to 1, and activated adsorption at higher coverages. Upon room temperature adsorption a series of complex LEED patterns is observed. In layers adsorbed at 1050 K and cooled to room temperature, the well-known p(2 × 1) structure is the first ordered structure observed. This structure shows a reversible order-disorder transition between 700 K and 1000 K and is characterized by a work function which is lower than that of the clean surface. Heating room temperature adsorbates changes their structure irreversibly. At temperatures below 750 K some new structures are observed. Combining the results obtained in this study with other published work leads to a considerable revision of the previously accepted model of the adsorption of oxygen on W(100).  相似文献   

20.
Density functional theory is used to study the effect of atomic oxygen adsorption at various coverages with and without the presence of water on ordered and Pt-segregated PtCo surfaces. The strength of O adsorption, as well as surface reconstruction effects due to the adsorbate are strongly influenced by the presence of the oxygen-philic transition metal on the surface or subsurface. At high O coverage, buckling of the Co atom on PtCo surfaces is much smaller than that of Pt on Pt(1 1 1) surfaces, and buckling of Pt atoms on Pt-skin surfaces is negligible. Also, the effect of an electric field perpendicular to the surface on adsorbed water and atomic oxygen is investigated. Spontaneous water dissociation is not found on the ordered and segregated alloy surfaces within the entire applied electric field range (−0.51 to 0.51 V/Å). Water changes orientation under strong negative fields, switching from a metal–O to a metal–H interaction, and the effect is much more pronounced in the low-coordination sites of cluster models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号