共查询到18条相似文献,搜索用时 78 毫秒
1.
2.
由于在微电子器件制造,成像系统及太阳能电池等领域里具有广阔的应用前景,激光诱导化学及电化学沉积金属的研究,最近几年引起了极大兴趣[1-3],例如Zahavi[4]报道了Pd,Au,Ni-Pd在氩离子激光作用下可以不加偏压实现在半导体Si,InPGaAs上的无掩膜选择性沉积,金属沉积只发生在光照部位.大多数研究工作是围绕应用技术而开展的,理论研究,尤其是光电化学方面的研究尚十分欠缺.我们认为对于普通电镀液中的激光诱导电沉积来讲,既使不需外加偏压,沉积过程也必然伴随着溶液中金属离子与半导体能带之间的电荷传递,因此可以通… 相似文献
3.
电沉积铜钴纳米多层膜的机理研究 总被引:6,自引:0,他引:6
采用动电位扫描,循环伏安以及电化学交流阻抗等方法研究了铜钴米多层膜的电沉积机理,结果表明:在所研究的体系中,铜的沉积是扩散控制的可逆电极过程,而钴的沉积是首先形成Co(OH)ads的吸附中间产物,而后在电极上进一步还原为原子态,基于研究结果,提出了铜钴沉积的机制。 相似文献
4.
5.
半导体硅上电沉积Ni-Pd-P薄膜及其结构 总被引:1,自引:0,他引:1
采用控电位的沉积方式在半导体硅上制备出NiPdP薄膜,结果表明镀液中H3PO3含量的增加对P、Ni的析出有促进作用,对Pd的析出有抑制作用.随pH值的升高,镍含量不断升高,Pd、P含量不断下降.P含量对薄膜内应力有很大影响,含P质量分数为149%的NiPdP镀层表面上有许多裂缝,当P含量增加到261%时,镀层表面的裂缝已基本消失,继续增加P含量到350%时,裂缝完全消失.NiPdP镀层的结构与其组成密切相关,P含量小于200%的NiPdP镀层形成的是面心立方结构的固溶体.P含量大于400%的薄膜为非晶态结构. 相似文献
6.
7.
通过测定α-酞菁铜(α-CuPc)在4种不同的有机溶剂中的紫外可见光吸收光谱,研究了不同溶剂以及加入不同量的三氟乙酸(TFAA)对酞菁铜溶解性和质子化的影响.以溶解性研究为基础,探讨了在电化学沉积法制备酞菁铜薄膜时不同工艺条件对其形貌的影响.实验结果表明:加入TFAA后,酞菁铜在硝基甲烷和氯仿中溶解良好,而且在氯仿中更容易质子化;使用扫描电镜(SEM)表征,结果表明TFAA及酞菁铜摩尔含量对薄膜制备的影响最为明显. 相似文献
8.
氢气泡模板法电沉积制备三维多孔铜薄膜 总被引:5,自引:0,他引:5
应用阴极析氢气泡模板法电沉积制备三维多孔铜薄膜,基础电解液组成为0.2 mol.dm-3CuSO4和1.5 mol.dm-3H2SO4.研究了电流密度(0.5~8.0 A.cm-2)、温度(20~70℃)、支持电解质(Na2SO4)以及添加剂HC l和聚乙二醇(PEG)等对薄膜的孔径大小和孔壁结构的影响.扫描电子显微镜(SEM)分析表明,降低镀液温度和添加Na2SO4、PEG都可降低孔径的大小,但对孔壁结构无影响.加入微量的氯离子可显著改变薄膜的孔壁结构,得到孔壁结构较为致密的三维多孔铜电极.循环伏安(CV)测试结果显示三维多孔铜薄膜电极在碱性条件下电氧化甲醇的电流密度比光滑铜电极提高了近20倍. 相似文献
9.
硬质粒子扰动下铜电沉积研究 总被引:1,自引:0,他引:1
使用常规旋转电极电沉积技术,引入陶瓷球等一类硬质粒子,在旋转电极的带动下,使陶瓷球不断磨擦和撞击阴极表面而实现电铸铜.对比酸性溶液电铸铜和碱性溶液电铸铜,发现硬质粒子在电沉积过程中能扰动离子的放电过程,并影响电铸层的组织结构.但由于二者放电机理不同,前者形成的电铸层表面布满尖状毛刺,而后者则表面尖刺消失,但脆性大.SEM和XRD测试表明,由碱性电铸液沉积的电铸铜层,表面光亮平整,晶粒致密,大小约为100~300 nm,其结晶形态接近无序取向. 相似文献
10.
离子液体中铜的电沉积行为 总被引:1,自引:0,他引:1
在含有氯化铜的氯化1-丁基-3-甲基咪唑(BMIC)和乙二醇(EG)体系中研究金属铜的电沉积。在BMIC中加入EG,分别研究了EG对离子液体BMIC的粘度和电导率的影响,并通过循环伏安法研究了BMICCuCl2-EG溶液中Cu(Ⅱ)的电化学行为,考察了乙二醇浓度、温度和扫描速度对Cu(Ⅱ)电化学行为的影响。结果表明,Cu(Ⅱ)的电还原过程分为两个过程,其中Cu(Ⅱ)/Cu(Ⅰ)是扩散控制下的不可逆过程,Cu(Ⅰ)/Cu是不可逆过程。计算得出,在343 K时,Cu(Ⅱ)/Cu(Ⅰ)还原过程中的扩散系数D为7.0×10-7cm2/s,传递系数为0.24。在Cu膜表面进行了电沉积,获得金属铜颗粒,经扫描电子显微镜观察Cu的电沉积层的形貌发现,在343 K时沉积30 min后,金属铜晶粒致密,将沉积时间延长至2 h后,晶粒呈球状。 相似文献
11.
12.
采用极化曲线和电化学交流阻抗法测试,研究了封孔镀铜过程中整平剂JGB的作用机理,同时利用质谱和液体核磁共振谱确定了通电过程中JGB分解产物A的结构。结果表明,JGB是一种非常不稳定的物质,在较低的阴极极化电位下JGB通过断开-N=N-双键同时加氢来实现它向产物A的转化,转化过程中JGB从电极表面脱附。相对JGB而言,产物A比较稳定,它在阴极表面的吸附强度随电位负移而增强。封孔镀过程中,因印制线路板(PCB)表面的工作电位一般都较JGB的脱附电位更负,而在此电位下,产物A可稳定吸附于电极表面,所以JGB的分 相似文献
13.
Ni-Mo合金电沉积层织构及形成机理 总被引:2,自引:0,他引:2
在组成为:0.22mol/L硫酸镍、0.06mol/L钼酸钠和0.3mol/L柠檬酸钠的溶液,于纯铜片上采用恒电流沉积,所得Ni-Mo合金沉积层经X射线衍射测定,结果表明在温度为25℃~50℃,电流密度为10mA·cm-2~30mA·cm-2范围,Ni-Mo合金沉积层表现为(111)择优取向.循环伏安和电位阶跃实验表明镍钼合金电结晶过程按照连续成核和三维生长方式进行.Ni-Mo合金电沉积过程的电化学交流阻抗谱表明Ni-Mo共沉积过程经历了吸附中间产物步骤,由于吸附态物种氢氧化镍和钼的氧化物将阻化晶粒(111)晶面的生长,从而使镍钼沉积层表现为(111)择优取向. 相似文献
14.
芯片制造中大量使用物理气相沉积、化学气相沉积、电镀、热压键合等技术来实现芯片导电互连. 与这些技术相比, 化学镀因具有均镀保形能力强、工艺条件温和、设备成本低、操作简单等优点, 被人们期望应用于芯片制造中, 从而在近年来得到大量的研究. 本综述首先简介了芯片制造中导电互连包括芯片内互连、芯片3D封装硅通孔(TSV)、重布线层、凸点、键合、封装载板孔金属化等制程中传统制造技术与化学镀技术的对比, 说明了化学镀用于芯片制造中的优势; 然后总结了芯片化学镀的原理与种类、接枝与活化前处理方法和关键材料; 并详细介绍了芯片内互连和TSV互连化学镀阻挡层、种子层、互连孔填充、化学镀凸点、再布线层、封装载板孔互连种子层以及凸点间键合的研究进展; 且讨论了化学镀液组成及作用, 超级化学镀填孔添加剂及机理等. 最后对化学镀技术未来应用于新一代芯片制造中进行了展望. 相似文献
15.
在含有氯化铜的氯化1-丁基-3-甲基咪唑(BMIC)和乙二醇(EG)体系中研究金属铜的电沉积。 在BMIC中加入EG,分别研究了EG对离子液体BMIC的粘度和电导率的影响,并通过循环伏安法研究了BMIC-CuCl2-EG溶液中Cu(Ⅱ)的电化学行为,考察了乙二醇浓度、温度和扫描速度对Cu(Ⅱ)电化学行为的影响。 结果表明,Cu(Ⅱ)的电还原过程分为两个过程,其中Cu(Ⅱ)/Cu(Ⅰ)是扩散控制下的不可逆过程,Cu(Ⅰ)/Cu是不可逆过程。 计算得出,在343 K时,Cu(Ⅱ)/Cu(Ⅰ)还原过程中的扩散系数D为7.0×10-7 cm2/s,传递系数为0.24。 在Cu膜表面进行了电沉积,获得金属铜颗粒,经扫描电子显微镜观察Cu的电沉积层的形貌发现,在343 K时沉积30 min后,金属铜晶粒致密,将沉积时间延长至2 h后,晶粒呈球状。 相似文献
16.
钛基氧化铱电极作为DSA(dimension stable anode)中的典型电极,广泛应用于各个领域.目前工业生产的钛基氧化铱电极主要由传统热分解法制备,存在成本高昂,工艺繁琐,依赖人工劳动,无法大规模生产等问题,十分有必要探索开发新的制备技术.本文从沉积液配方、基底材料的选择及处理、电沉积方式以及沉积时间等方面系... 相似文献
17.
采用FESEM、XRD和EDS分析了纳米二氧化硅烧结片在900℃的CaCl2熔盐中浸泡后结构和组成的变化,结果表明,由于纳米尺寸效应和CaCl2熔盐对二氧化硅的熔融(软化)具有助熔作用,纳米二氧化硅烧结片在900℃的CaCl2熔盐中由固态转变为熔融或半熔融态。根据对900℃的CaCl2熔盐中-1.2V恒电位电解不同时间电极片上反应区的结构和组成分析结果,提出了纳米二氧化硅电极片的硅/熔融二氧化硅/熔盐三相界面沿极片径向方向均匀推进的电解还原过程。通过对900℃的CaCl2熔盐中-1.2V恒电位电解5和15min电解产物的形貌、结构和成份分析,提出了硅纳米线在熔盐中的电化学成核与生长机理。 相似文献
18.
The new compound Cu4SiP8 was prepared by solid state reaction of the elemental components. It crystallizes with a new structure type, which was determined from single-crystal X-ray diffractometer data: I41/a, a = 1 218.6(2) pm, c = 573.2(2) pm, Z = 8, R = 0.023 for 970 structure factors and 31 variable parameters. Tetrahedral SiP4 groups are linked via additional phosphorus atoms to a three-dimensionally infinite silicon phosphorus network, accommodating Cu2 pairs with octahedral phosphorus coordination as is known for the closely related structure of CuP2. Using oxidation numbers the compound may be rationalized by the formula (Cu+1)4Si+4(P0)4(P?2)4 in agreement with the Zintl-Klemm concept. 相似文献