首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
In the present experimental study the effect of a control disc mounted at the rear of an axisymmetric blunt-based body of revolution, first studied by Mair, is investigated in the Reynolds number range 3×103ReD≤5×104 . As the distance of the control disc from the blunt base is increased, four vortex shedding regimes are identified: at small distances there is no effect, then a sharp increase of vortex shedding activity and total drag is observed, followed by an interval with reduced activity and drag and finally at large distances a regime where the flow around the main body and disc become essentially independent, i.e. where the drag forces of the two elements become additive. The near and far wake velocity fields corresponding to the different regimes are documented with time- and phase-averaged hot-wire and LDA measurements, with spectral analysis of the data and with flow visualizations of the near wake. The results are used to develop an improved understanding of the instability mechanism leading to high vortex shedding activity.  相似文献   

2.
In this paper, we address the influence of a blowing-/suction-type distributed forcing on the flow past a blunt-based axisymmetric bluff body by means of direct numerical simulations. The forcing is applied via consecutive blowing and suction slots azimuthally distributed along the trailing edge of the bluff body. We examine the impact of the forcing wavelength, amplitude and waveform on the drag experienced by the bluff body and on the occurrence of the reflectional symmetry preserving and reflectional symmetry breaking wake modes, for Reynolds numbers 800 and 1,000. We show that forcing the flow at wavelengths inherent to the unforced flow drastically damps drag oscillations associated with the vortex shedding and vorticity bursts, up to their complete suppression. The overall parameter analysis suggests that this damping results from the surplus of streamwise vorticity provided by the forcing that tends to stabilize the ternary vorticity lobes observed at the aft part of the bluff body. In addition, conversely to a blowing-type or suction-type forcing, the blowing-/suction-type forcing involves strong nonlinear interactions between locally decelerated and accelerated regions, severely affecting both the mean drag and the frequencies representative of the vortex shedding and vorticity bursts.  相似文献   

3.
The present experimental investigation deals with the behaviour of a wake generated by a square cylinder developing in a curved diffuser, a curved duct, a straight duct and a straight diffuser having a same pressure gradient as in the curved diffuser. This enables a systematic study of the effects of curvature and pressure gradient on wake development. It is seen that the curvature makes the wake asymmetric; the wake half width increases on the inner side and decreases on the outer side; the inner side being the region between the centreline and the wall closer to the centre of curvature and the outer side being the region between the centreline and the other wall. It causes a higher entrainment in the inner side as compared to the outer side. An adverse pressure gradient, on the other hand, causes a higher wake growth and velocity defect but reduces the rate of decay of the velocity defect. These are not altered significantly when the curvature and pressure gradient effects are combined. The curvature enhances the Reynolds stresses and the kinetic energy on the inner side and suppresses them on the outer side which makes their profiles asymmetric. These profiles become more and more asymmetric with increase in the streamwise distance. When the effects of curvature and adverse pressure gradient are combined, the profiles become further asymmetric.Department of Aerospace Engineering  相似文献   

4.
The present study aims at the investigation of the effects of turbulence-chemistry interaction on combustion instabilities using a probability density function(PDF) method.The instantaneous quantities in the flow field were decomposed into the Favre-averaged variables and the stochastic fluctuations,which were calculated by unsteady Reynolds averaged Navier-Stokes(U-RANS) equations and the PDF model,respectively.A joint fluctuating velocityfrequency-composition PDF was used.The governing equations are solved by a consistent hybrid finite volume/MonteCarlo algorithm on triangular unstructured meshes.A nonreacting flow behind a triangular-shaped bluff body flame stabilizer in a rectilinear combustor was simulated by the present method.The results demonstrate the capability of the present method to capture the large-scale coherent structures.The triple decomposition was performed,by dividing the coherent Favre-averaged velocity into time-averaged value and periodical coherent part,to analyze the coherent and incoherent contributions to Reynolds stresses.A simple modification to the coefficients in the turbulent frequency model will help to improve the simulation results.Unsteady flow fields were depicted by streamlines and vorticity contours.Moreover,the association between turbulence production and vorticity saddle points is illustrated.  相似文献   

5.
The variation of the base drag of an axisymmetric bluff body caused by modifications of the boundary-layer separating at the sharp-edged contour of its base is analysed through different numerical simulations, and the results are compared with those of a previous experimental investigation. Variational MultiScale Large-Eddy Simulations (VMS-LES) are first carried out on the same nominal geometry and at the same Reynolds number of the experiments. Subsequently, Direct Numerical Simulations (DNS) are performed at Reynolds numbers that are roughly two orders of magnitude lower, in order to investigate on the sensitivity of the main findings to the Reynolds number. The results of experiments, VMS-LES and DNS simulations show that an increase of the base pressure – and thus a decrease of the base drag – may be obtained by increasing the boundary layer thickness before separation, which causes a proportional increase of the length of the mean recirculation region behind the body. In spite of the different setups, Reynolds numbers and turbulence levels in the experiments and numerical simulations, in all cases the base pressure is found to be directly proportional to the length of the mean recirculation region, which is thus a key index of the base drag value. In turn, the recirculation length seems to be connected with the location of the incipient instability of the detaching shear layers, which can be moved downstream by an increase of the thickness of the separating boundary layer and upstream by an increase of the turbulence level.  相似文献   

6.
7.
Controlled interactions between fluidic actuators and the cross flow over the aft end of a wire-mounted axisymmetric wind tunnel bluff body model (ReD=2.3·105) are exploited for modification of the near wake dynamics, and the consequent global aerodynamic loads. Actuation is effected using an array of four aft-facing synthetic jet modules through narrow, azimuthally-segmented slots that are equally distributed around the perimeter of the tail end. The model is supported by eight wires, each including a miniature inline force transducer for measurements of the time-resolved tension. The model’s position is varied in a prescribed trajectory by synchronous activation of shape memory alloy (SMA) segments in each of the mounting wires, and the aerodynamic forces and moments are manipulated over a range of pitch attitude. The effectiveness of the flow control approach is demonstrated by decoupling of the wake response from the body’s pitch motion at a low pitch frequency (k=0.013). It is shown that, under the active control, the wake symmetry can be restored or its asymmetry can be amplified.  相似文献   

8.
The separated flow around a rectangular cylinder, in the presence of a transverse duct resonant acoustic mode, is modelled using a vortex method. The instantaneous transfer of power between the mean flow and the acoustic field is predicted using Howe's theory of aerodynamic sound. Whether the net acoustic energy per cycle generated is positive or negative depends on the phase of the acoustic cycle at which vortex clouds arrive at the trailing edge of the cylinder.  相似文献   

9.
10.
A branch of relative periodic orbits is found in plane Poiseuille flow in a periodic domain at Reynolds numbers ranging from Re=3000Re=3000 to Re=5000Re=5000. These solutions consist in sinuous quasi-streamwise streaks periodically forced by quasi-streamwise vortices in a self-sustained process. The streaks and the vortices are located in the bulk of the flow. Only the amplitude, but not the shape, of the averaged velocity components does change as the Reynolds number is increased from 3000 to 5000. We conjecture that these solutions could therefore be related to large- and very large-scale structures observed in the bulk of fully developed turbulent channel flows.  相似文献   

11.
The flow around a stationary circular cylinder modified by two synthetic jets positioned at the mean separation points is numerically studied. The Reynolds number based on the free-stream velocity and the circular cylinder diameter is Re=500. The focus is to present a novel way to suppress the lift fluctuations by changing the vortex shedding mode, and thus particular attention is paid to the interactions between the synthetic jets and wake shear layers and the resulting vortex dynamics. The overall influences of both momentum coefficient and excitation frequency are discussed. In some simulated cases, the vortex lock-on phenomenon is discovered, which causes the typical Kàrmàn type vortex shedding to be converted into the symmetric shedding modes, leading to the complete suppression of lift fluctuations. In other cases, the asymmetric shedding mode still dominates the wake evolution. Detailed vortical evolution for each typical wake pattern is analyzed to reveal the control mechanism. Additionally, the control effectiveness is evaluated, indicating that the present control strategy contributes an effective way to suppress the lift fluctuations and reduce the mean drag.  相似文献   

12.
Structure of wake of a sharp-edged bluff body in a shallow channel flow   总被引:1,自引:0,他引:1  
The flow field downstream of a bluff body in a typical open channel flow was explored by two-dimensional particle image velocimetry. Measurements are obtained in horizontal planes at the near-bed, mid-depth and near-surface locations downstream of the body up to a streamwise distance of 10D, where D is the width of the body. The dimensionless streamwise defect velocity profile of the wake flow matches well with the data of a previous investigation and does not reflect any dependency on the distance from the bed. However, the nature of development of the recirculation region is found to be different at the three vertical locations. The time-averaged streamline pattern indicates the existence of a unique nodal pattern close to the bed. The variation of the half-width is also found to be affected by the presence of the bed and the free surface. The bed friction arrests the transverse growth of the shear layer, and the free-surface helps to redistribute the turbulent kinetic energy in the streamwise and transverse directions. Swirling strength analysis is carried out to compare the behavior and statistics of the vortex population in the vertical direction. The prevailing magnitude of the swirling strength is found to be different at the three vertical locations. Bed friction assists to dissipate vorticity rapidly, and therefore reduces the probability of appearance of strong vortices close to the bed.  相似文献   

13.
14.
The wake produced by a bluff body driven through a steady recirculating flow is studied experimentally in a water facility using particle image velocimetry. The bluff body has a rectangular cross section of height, \(H\), and width, \(D\), such that the aspect ratio, AR = H/D, is equal to 3. The motion of the bluff body is uniform and rectilinear, and corresponds to a Reynolds number based on width, Re D  = 9,600. The recirculating flow is confined within a hemicylindrical enclosure and is generated by planar jets emanating from slots of width, \(h\), such that \(Re_h=500\). Under these conditions, experiments are performed in a closed-loop facility that enables complete optical access to the near-wake. Velocity fields are obtained up to a distance of \(13D\) downstream of the moving body. Data include a selection of phase-averaged velocity fields representative of the wake for a baseline case (no recirculation) and an interaction case (with recirculation). Results indicate that the transient downwash flow typically observed in wakes behind finite bodies of small aspect ratio is significantly perturbed by the recirculating flow. The wake is displaced from the ground plane and exhibits a shorter recirculation zone downstream of the body. In summary, it was found that the interaction between a bluff body wake and a recirculating flow pattern alters profoundly the dynamics of the wake, which has implications on scalar transport in the wake.  相似文献   

15.
The present work is aimed to give some insight into the relation between vortex shedding modes and transition to three-dimensionality in the wake of a freely vibrating cylinder by establishing a numerical model and analyzing the relevant results of two- and three-dimensional simulations. The compressible flow past an elastically-mounted cylinder is solved by using the immersed boundary method (IB method). The cylinder is free to vibrate in the transverse direction with zero structure damping. The response of displacement amplitude is studied with the variation of reduced velocity. Whether P+S mode exists in three-dimensional flow and the occurrence of 2P mode is caused by flow transition from two-dimensional to three-dimensional are problems of concern. Both 2P and P+S wake modes are observed in two- and three-dimensional simulations. The numerical results indicate that the flow transition from two-dimensional to three-dimensional is coupled with the cylinder vibration in the synchronization/lock-in regime. The wake formation given by three-dimensional simulations suggests that the P+S mode might exist in reality when the flow is reverted to two-dimensional by vortex induced vibration (VIV) at Re=300–350. When Reynolds number increases to 425, the wake formation undergoes transition to three-dimensionality and 2P mode is observed. The effect of mass ratio on the flow transition to three-dimensionality is studied. The relationship between wake modes and aerodynamic forces is discussed.  相似文献   

16.
M. Falco  M. Gasparetto 《Meccanica》1974,9(4):325-336
Summary Purpose of this work is to describe the results obtained in a wind-tunnel on a model consisting of two cylinders, one in the wake of the other, with both fixed or with the downstream cylinder allowed to vibrate.The fundamental characteristics of the fluid in the wake and the forces acting on the downstream cylinder are also reported. The value of energy introduced by the fluid on a vibrating cylinder in the wake is also determined.
Sommario Vengono riportati i risultati sperimentali ottenuti in galleria del vento su un modello costituito da due cilindri, di cui uno è posto in scia dell'altro, nei casi in cui siano entrambi fissi o che il cilindro in scia possa vibrare.Sono pure riportate le caratteristiche fondamentali del fluido nella scia e le forze che agiscono sul cilindro a valle. Nel caso in cui il cilindro in scia possa vibrare viene pure riportato il valore dell'energia introdotta dal fluido.


This work is the outcome of a collaboration between ENEL, Salvi S.p.A. and the Institute of Applied Mechanics, Polytechnic of Milan. The Institute of Applied Mechanics received a CNR subsidy to take part in this research.  相似文献   

17.
The vortex formation and shedding process in the near wake region of a 2D square-section cylinder at incidence has been investigated by means of particle image velocimetry (PIV). Proper orthogonal decomposition (POD) is used to characterize the coherent large-scale flow unsteadiness that is associated with the wake vortex shedding process. A particular application of the POD analysis is to extract the vortex-shedding phase of individual velocity fields, which were acquired at asynchronous low rate with respect to the vortex shedding cycle. The phase of an individual flow field is determined from its projection on the first pair of POD modes, allowing phase averaging of the measurement data to be performed. In addition, a low-order representation of the flow, constructed from the mean and the first pair of POD modes, is found to be practically equivalent to the phase-averaged results. It is shown that this low-order representation corresponds to the basic Fourier component of the flow field ensemble with respect to the reconstructed phase. The phase-averaged flow representations reveal the dominant flow features of the vortex-shedding process and the effect of the angle of incidence upon it.  相似文献   

18.
Symmetric perturbations imposed on cylinder wakes may result in a modification of the vortex shedding mode from its natural antisymmetric, or alternating, to a symmetric one where twin vortices are simultaneously shed from both sides of the cylinder. In this paper, the symmetric mode in the wake of a circular cylinder is induced by periodic perturbations imposed on the in-flow velocity. The wake field is examined by PIV and LDV for Reynolds numbers about 1200 and for a range of perturbation frequencies between three and four times the natural shedding frequency of the unperturbed wake. In this range, a strong competition between symmetric and antisymmetric vortex shedding occurs for the perturbation amplitudes employed. The results show that symmetric formation of twin vortices occurs close to the cylinder synchronized with the oscillatory component of the flow. The symmetric mode rapidly breaks down and gives rise to an antisymmetric arrangement of vortex structures further downstream. The downstream wake may or may not be phase-locked to the imposed oscillation. The number of cycles for which the symmetric vortices persist in the near wake is a probabilistic function of the perturbation frequency and amplitude. Finally, it is shown that symmetric shedding is associated with positive energy transfer from the fluid to the cylinder due to the fluctuating drag.  相似文献   

19.
The intrinsic physical relationship of vorticity between modes A and B in the three-dimensional wake transition is investigated.Direct numerical simulations for the flow past a square-section cylinder are carried out at Reynolds numbers of 180 and 250,associated with modes A and B,respectively.Based on the analysis of spacial distributions of vorticity in the near wake,characteristics of the vertical vorticity in modes A and B are identified.Moreover,the relationship of three vorticity components with specific signs is summarized into two sign laws,as intrinsic physical relationships between two instability modes.By the theory of vortex-induced vortex,such two sign laws confirm that there are two and only two kinds of vortex-shedding patterns in the near wake,just corresponding to modes A and B.In brief,along the free stream direction,mode A can be described by the parallel shedding vertical vortices with the same sign,while mode B is described by the parallel shedding streamwise vortices with the same sign.Finally,it is found out that the|-type vortex is a basic kind of vortex structure in both modes A and B.  相似文献   

20.
Flow characteristics around the square cylinder and their influence on the wake properties are studied. Time-averaged flow patterns on the surfaces of square cylinder in a cross-stream at incidence are experimentally probed by surface-oil flow technique and analyzed by flow topology for Reynolds numbers between 3.9×104 and 9.4×104 as the incidence angle changes from 0° to 45°. Vortex shedding characteristics are measured by a single-wire hot-wire anemometer for Reynolds numbers between 5×103 and 1.2×105. The effects of topological flow patterns on the wake properties then are revealed and discussed. Flows around the square cylinder are identified as three categories: the subcritical, supercritical, and wedge flows according to the prominently different features of the topological flow patterns. The Strouhal number of vortex shedding, turbulence in the wake, and wake width present drastically different behaviors in different characteristic flow regimes. A critical incidence angle of 15° separates the subcritical and supercritical regimes. At the critical incidence angle the wake width and shear-layer turbulence present minimum values. The minimum wake width appearing at the critical incidence angle, which leads to the maximum Strouhal number, is due to the reattachment of one of the separated boundary layer to the lateral face of the square cylinder. If the Strouhal numbers are calculated based on the wake width instead of the cross-stream projection width of cylinder, the data in the subcritical and supercritical regimes are well correlated into two groups, which would approach constants at high Reynolds numbers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号