首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
化石燃料的枯竭和不断增长的能源需求给人类带来巨大的挑战,加之能源消耗过程带来的环境问题使得开发清洁可再生绿色能源迫在眉睫.氢能具有零排放、可再生、能量高和来源广等特点,且可通过化石能源和电解水制取,是未来人类最理想的替代能源之一.相较于化石能源制氢,电解水制氢被认为是一种最有前途的清洁制氢技术,能够将可再生能源(例如太阳能和风能)产生的剩余电能以化学能的形式存储起来.电解水反应由发生在阴极的析氢反应与发生在阳极的析氧反应组成.其中,析氧反应涉及多个质子和电子转移,反应动力学缓慢严重限制了其水分解的整体效率.为满足实际应用,亟待开发低成本、高催化活性和在工业电解条件(60~80℃,20%~30% KOH,400 mA·cm-2)下长期稳定性强等特性的析氧催化剂.本文报道了一种用于析氧反应的自支撑泡沫镍铁自支撑的镍铁层状双金属氢氧化物-二硫化钼(NiFe LDH-MoSx/INF)集成电极,在正常碱性测试条件(25℃,1 M KOH)和模拟工业电解条件(65 ° C,5 M KOH)下均表现出优异的催化性能.优化后的电极在一般碱性测试条件下,过电势仅需195和290 mV即可达到100和400 mA·cm-2的电流密度.在模拟工业电解条件下达到相同的电流密度,过电势只需156和201 mV.在两种条件下进行长期稳定性测试,催化剂均未观察到明显的失活现象.在两电极体系(NiFe LDH-MoSx/INF ‖ 20%Pt/C)全解水测试中,达到100 mA·cm2的电流密度仅需1.72 V的电压.还使用NiFe LDH-MoSx/INF作为阳极催化剂构建膜电极并评价其阴离子交换膜电解水的性能:在400 mA·cm-2的电流密度下能量转换效率(60℃,1 M KOH)为71.8%.综上,原位生长策略保证了此类电极的长期稳定性.硫化基底的存在可以控制NiFe LDH的生长厚度,从而提高集成电极的整体导电性.另外,MoSx的引入进一步调节了NiFe LDH的电子结构,进而优化了反应中间体的吸附能及状态.在模拟工业操作条件下进行的电化学测试进一步证实了多孔三维自支撑NiFe LDH-MoSx/INF集成电极具有在工业电解水中大规模应用的前景.本文为合理设计用于工业阴离子交换膜水电解的非贵金属析氧催化剂提供新的策略.  相似文献   

2.
碱性阴离子交换聚合物膜研究进展   总被引:2,自引:0,他引:2  
碱性燃料电池(AFCs)是一种直接将化学能转化为电能的发电装置,因其高效、环保等优点,得到了科学界与工业界的广泛关注。阴离子交换聚合物膜作为碱性阴离子交换膜燃料电池的核心组成部分,要求其具备优异的电导率、良好的化学稳定性及力学强度。本文主要从聚合物主链及阳离子官能团的结构与性能之间的关系及调控方式方面,综述了碱性阴离子交换膜的研究进展。  相似文献   

3.
氢气是一种能量密度高,可完全燃烧的清洁能源.发展绿色制氢技术对于解决全球环境污染,二氧化碳排放等环境问题具有重要意义.电化学水分解被认为是一种清洁高效的制氢手段,可自恰于可再生能源的波动性,具有效率高、响应快、氢气纯度高等优点.然而,由于电化学反应过电位大及动力学缓慢的原因,驱动电化学水分解的能量消耗巨大.因此,开发高...  相似文献   

4.
采用辐射接枝法将氯甲基苯乙烯(VBC)接枝到四氟乙烯-全氟烷氧基乙烯基醚共聚物(PFA)基底上并对其进行季铵化和碱性化改性制备了阴离子交换膜(PFA-g-PVBC).对制得的膜采用薄膜拉伸试验、热重(TG)、热水和热碱处理等方法考察了其机械性能、热稳定性和化学稳定性.结果表明:PFA-g-PVBC阴离子交换膜具有良好的机械性能,该膜在60℃去离子水中和室温下碱性溶液中可稳定存在,但在60℃碱性溶液中因Hofmann降解反应和直接亲核取代反应而导致其电导率下降.将该膜应用于常温"自呼吸"式碱性直接乙醇燃料电池中,30mAcm-2恒电流放电情况下,电池可一次性连续放电10h以上,累计放电时间长达30h.  相似文献   

5.
李英杰  王鑫  周昱成 《无机化学学报》2023,39(10):1905-1913
通过离子交换的方式将Ru负载到NiFe水滑石(LDH)纳米阵列表面得到(Ru/NiFe LDH),Ru的引入显著提升了NiFe LDH的活性比表面积,暴露了更多的活性位点,同时调控了其电子结构,大大提升了其本征催化活性。在碱性条件下,催化析氢反应时仅需50 mV的过电位即可达到10 mA·cm-2的电流密度,Tafel斜率为52.3 mV·dec-1。而相同条件下原始NiFe LDH达到10mA·cm-2的电流密度则需要226 mV的过电位,Tafel斜率为157.5 mV·dec-1。同时制备的Ru/NiFe LDH也展现出了良好的析氧催化活性,在50 mA·cm-2的电流密度下,过电位仅为231 mV,而NiFe LDH则需237 mV。Ru/NiFe LDH在长时间的电催化条件下依然能保持良好的工作稳定性。  相似文献   

6.
通过离子交换的方式将Ru负载到NiFe水滑石(LDH)纳米阵列表面得到(Ru/NiFe LDH),Ru的引入显著提升了NiFe LDH的活性比表面积,暴露了更多的活性位点,同时调控了其电子结构,大大提升了其本征催化活性。在碱性条件下,催化析氢反应时仅需50 mV的过电位即可达到10 mA·cm-2的电流密度,Tafel斜率为52.3 mV·dec-1。而相同条件下原始NiFe LDH达到10mA·cm-2的电流密度则需要226 mV的过电位,Tafel斜率为157.5 mV·dec-1。同时制备的Ru/NiFe LDH也展现出了良好的析氧催化活性,在50 mA·cm-2的电流密度下,过电位仅为231 mV,而NiFe LDH则需237 mV。Ru/NiFe LDH在长时间的电催化条件下依然能保持良好的工作稳定性。  相似文献   

7.
采用简便的一步水热合成法,在泡沫镍上原位生长微量W~(6+)掺入的Fe_(0.2)Ni(OH)_2双金属层状氢氧化物(LDH),以此来降低铁镍材料的过电势。通过场发射扫描电子显微镜(FESEM)、X射线衍射(XRD)、X射线光电子能谱(XPS)和拉曼光谱(Raman)等分析方法对材料形貌、组成、结构等进行表征,发现钨掺杂使催化剂材料的晶体结构和电子结构发生变化,W_(0.03)Fe_(0.2)Ni(OH)_2LDH表现出优异的电化学析氧(OER)和析氢(HER)性能。电化学测试表明该催化剂在25 mA·cm~(-2)电流密度下OER和HER过电势分别仅有271和208 mV,塔菲尔斜率分别为61和181 mV·dec~(-1)。此外,经过长达20 h计时电位稳定性测试后,材料的催化性能未见明显下降。  相似文献   

8.
采用界面工程策略在泡沫镍(NF)上制备了CuCo2O4/NiFe层状双金属氢氧化物(LDH)(CuCo2O4/NiFe-LDH@NF)核壳纳米花球阵列。研究表明,电子通过CuCo2O4和NiFe-LDH耦合界面发生转移,导致核心CuCo2O4处于富电子状态,从而提高了反应速率。非晶态NiFe-LDH外壳不仅为电子/物质提供更多的传输通道和增加活性位点。同时,还能在电催化析氧反应(OER)中保护核心CuCo2O4免受强碱腐蚀。因此,在1.0 mol·L-1 KOH溶液中,将CuCo2O4/NiFe-LDH@NF用作OER催化剂时,仅需191mV的低过电位即可实现10 mA·cm-2的电流密度和31 mV·dec-1的低Tafel斜率。此外,CuCo2O4/NiFe-LDH@NF在长时间的工作中能够保证催化性能、晶体结构、形貌结构和组成的稳定。  相似文献   

9.
采用界面工程策略在泡沫镍(NF)上制备了 CuCo2O4/NiFe 层状双金属氢氧化物(LDH) (CuCo2O4/NiFe-LDH@NF)核壳纳米花球阵列。研究表明,电子通过CuCo2O4和NiFe-LDH耦合界面发生转移,导致核心CuCo2O4处于富电子状态,从而提高了反应速率。非晶态NiFe-LDH外壳不仅为电子/物质提供更多的传输通道和增加活性位点。同时,还能在电催化析氧反应(OER)中保护核心 CuCo2O4免受强碱腐蚀。因此,在 1.0 mol·L-1 KOH 溶液中,将 CuCo2O4/NiFe-LDH@NF 用作 OER 催化剂时,仅需 191mV 的低过电位即可实现 10 mA·cm-2的电流密度和 31 mV·dec-1的低 Tafel斜率。此外,CuCo2O4/NiFe-LDH@NF 在长时间的工作中能够保证催化性能、晶体结构、形貌结构和组成的稳定。  相似文献   

10.
Mg-Fe-LDHs纳米颗粒的合成及其阴离子交换容量的研究   总被引:11,自引:0,他引:11  
采用液相共沉淀法合成了镁铁型层状双氢氧化物(简称Mg-Fe-LDHs)纳米颗粒,考察了粒子形貌、化学组成、晶体结构、阴离子交换容量及原料配比的影响.结果表明,所合成样品为片状纳米颗粒,化学组成与原料配比基本一致.在所研究的原料配比范围内,产品中n(Mg):n(Fe)在2:1~4:1范围内,产品具有水滑石层状六方晶系结构.随n(Mg):n(Fe)从2:1增大到4:1,粒径增大(从37.9nm增大到61.2nm),六方晶格参数a降低(变化范围为0.317~0.310nm),而六方晶格参数c增大(变化范围为2.380~2.412nm),层间距增大(从0.793nm增大到0.804nm),阴离子交换容量增大(从0.52mmol/g增大到1.28mmol/g).  相似文献   

11.
Low‐temperature electricity‐driven water splitting is an established technology for hydrogen production. However, the two main types, namely proton exchange membrane (PEM) and liquid alkaline electrolysis, have limitations. For instance, PEM electrolysis requires a high amount of costly platinum‐group‐metal (PGM) catalysts, and liquid alkaline electrolysis is not well suited for intermittent operation. Herein we report a highly efficient alkaline polymer electrolysis design, which uses a membrane‐electrode assembly (MEA) based on low‐cost transition‐metal catalysts and an anion exchange membrane (AEM). This system exhibited similar performance to the one achievable with PGM catalysts. Moreover, it is very suitable for intermittent power operation, durable, and able to efficiently operate at differential pressure up to 3 MPa. This system combines the benefits of PEM and liquid alkaline technologies allowing the scalable production of low‐cost hydrogen from renewable sources.  相似文献   

12.
13.
For anion exchange membranes (AEMs), achieving efficient hydroxide conductivity without excessive hydrophilicity presents a challenge. Hence, new strategies for constructing mechanically strengthened and hydroxide conductive (especially at controlled humidity) membranes are critical for developing better AEMs. Macromolecular modification involving ylide chemistry (Wittig reaction) for the fabrication of novel AEMs with an interpenetrating polymer network structure is reported. The macromolecular modification is cost effective, facile, and based on a one‐pot synthesis. AEM water uptake is reduced to 3.6 wt% and a high hydroxide conductivity (69.7 mS cm−1, 90 °C) is achieved simultaneously. More importantly, the membrane exhibits similar tensile strength (>35 MPa) and comparable flexibility in both dry and wet states. These AEMs could find further applications within anion exchange membrane fuel cells with low humidity or photoelectric assemblies.

  相似文献   


14.
Exploring materials with regulated local structures and understanding how the atomic motifs govern the reactivity and durability of catalysts are a critical challenge for designing advanced catalysts. Herein we report the tuning of the local atomic structure of nickel–iron layered double hydroxides (NiFe‐LDHs) by partially substituting Ni2+ with Fe2+ to introduce Fe‐O‐Fe moieties. These Fe2+‐containing NiFe‐LDHs exhibit enhanced oxygen evolution reaction (OER) activity with an ultralow overpotential of 195 mV at the current density of 10 mA cm?2, which is among the best OER catalytic performance to date. In‐situ X‐ray absorption, Raman, and electrochemical analysis jointly reveal that the Fe‐O‐Fe motifs could stabilize high‐valent metal sites at low overpotentials, thereby enhancing the OER activity. These results reveal the importance of tuning the local atomic structure for designing high efficiency electrocatalysts.  相似文献   

15.
Novel crosslinked anion exchange membranes based on poly(phthalazinone ether ketone) (PPEK) were successfully prepared through chloromethylation, quaternization, membrane casting and OH‐ ionic exchange reaction from the quaternized PPEK (QPPEK) membrane. The quaternization was performed with N‐methylimidazolium (MIm) as ammonium agent and tetramethylethylenediamine (TMEDA) as crosslinking agent. The ion‐exchange capacity, swelling ratio (SR), water uptake (WU), and ionic conductivity of the QPPEK alkaline membranes have been systematically investigated. The results showed that QPPEK membranes have a high hydroxide conductivity and very low SR. For the QPPEK‐4 alkaline membrane with ion‐exchange capacity (IEC) 2.63 mmol/g, the WU was 35.8%, and the hydroxide conductivity was 0.028 S/cm at 30 °C and 0.032 S/cm at 70 °C, while its SR was only 7.6%. The thermal properties of the QPPEK alkaline membrane and CMPPEK were characterized using thermo‐gravimetric analysis measurements in a nitrogen atmosphere. The alkaline resistance of membrane QPPEK ?4 was also briefly investigated in 6 M KOH at 60 °C. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1632–1638  相似文献   

16.
Anion exchange membranes (AEMs) are core components in anion exchange membrane water electrolyzers (AEM-WEs). However, the stability of functional quaternary ammonium cations, especially under high temperatures and harsh alkaline conditions, seriously affects their performance and durability. Herein, we synthesized a 1-methyl-3,3-diphenylquinuclidinium molecular building unit. Density functional theory (DFT) calculations and accelerated aging analysis indicated that the quinine ring structure was exceedingly stable, and the SN2 degradation mechanism dominated. Through acid-catalyzed Friedel–Crafts polymerization, a series of branched poly(aryl-quinuclidinium) (PAQ-x) AEMs with controllable molecular weight and adjustable ion exchange capacity (IEC) were prepared. The stable quinine structure in PAQ-x was verified and retained in the ex situ alkaline stability. Furthermore, the branched polymer structure reduces the swelling rate and water uptake to achieve a tradeoff between dimensional stability and ionic conductivity, significantly improving the membrane's overall performance. Importantly, PAQ-5 was used in non-noble metal-based AEM-WE, achieving a high current density of 8 A cm−2 at 2 V and excellent stability over 2446 h in a gradient constant current test. Based on the excellent alkaline stability of this diaryl-quinuclidinium group, it can be further considered as a multifunctional building unit to create multi-topological polymers for energy conversion devices used in alkaline environments.  相似文献   

17.
Electrochemically active hollow nanostructured materials hold great promise in diverse energy conversion and storage applications, however, intricate synthesis steps and poor control over compositions and morphologies have limited the realization of delicate hollow structures with advanced functional properties. In this study, we demonstrate a one‐step wet‐chemical strategy for co‐engineering the hollow nanostructure and anion intercalation of nickel cobalt layered double hydroxide (NiCo‐LDH) to attain highly electrochemical active energy conversion and storage functionalities. Self‐templated pseudomorphic transformation of cobalt acetate hydroxide solid nanoprisms using nickel nitrate leads to the construction of well‐defined NiCo‐LDH hollow nanoprisms (HNPs) with multi‐anion intercalation. The unique hierarchical nanosheet‐assembled hollow structure and efficiently expanded interlayer spacing offer an increased surface area and exposure of active sites, reduced mass and charge transfer resistance, and enhanced stability of the materials. This leads to a significant improvement in the pseudocapacitive and electrocatalytic properties of NiCo‐LDH HNP with respect to specific capacitance, rate and cycling performance, and OER overpotential, outperforming most of the recently reported NiCo‐based materials. This work establishes the potential of manipulating sacrificial template transformation for the design and fabrication of novel classes of functional materials with well‐defined nanostructures for electrochemical applications and beyond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号