首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Comptes Rendus Physique》2014,15(7):599-615
We present here an overview of the properties of transuranium superconductors, but also of the (non-superconducting) transuranium analogues of uranium superconductors. We briefly review superconductivity in actinide elements and uranium compounds and focus in particular on the PuTX5 (T=Co,Rh; X=Ga,In) series, the largest superconducting system in actinides and NpPd5Al2, the so far unique neptunium superconductor. The effects of chemical substitution, ageing and pressure on the properties of transuranium superconductors are also discussed.  相似文献   

2.
3.
4.
《Comptes Rendus Physique》2014,15(4):300-308
The shape and composition of the primary spectrum as well as the large-scale anisotropy in the arrival direction of cosmic rays are key elements to understand the origin, acceleration and propagation of the Galactic radiation. Besides the well-known knee and ankle features, the measured energy spectrum exhibits also a less pronounced but still clear deviation from a single power law between the knee and the ankle, with a spectral hardening at 2×1016eV and a steepening at 1017eV. The average mass composition gets heavier after the knee till 1017eV, where a bending of the heavy component is observed. An indication of a hardening of the light component just above 1017eV has been measured as well. First indications of anisotropy of the arrival direction in the southern hemisphere have been reported at 1015eV.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
13.
The paper reports the results of numerical studies on the laser-driven acceleration of super-heavy ions by a multi-PW laser pulse of ultra-relativistic intensity attainable with the Extreme Light Infrastructure lasers currently being built in Europe. Using a multi-dimensional (2D3V) particle-in-cell code, it is shown that multi-GeV super-heavy (thorium) ion beams with an intensity of 10211022W/cm2, fluence 10171018cm?2 and time duration 20100fs can be produced from a sub-μm thorium target irradiated by a 150-J, 20-fs laser pulse with an intensity of 1023W/cm2. Such ion beams are impossible to obtain presently with the use of conventional RF-driven accelerators, so they can open the door to new areas of research in both nuclear and high energy-density physics.  相似文献   

14.
15.
16.
17.
18.
19.
20.
Pulsed neutrons generated in a plasma focus device are used for the thermal neutron activation analysis (TNAA) of selected three elements having widely different half-lives varying from a few seconds to a few days [Dysprosium (Dy), Manganese (Mn) and Gold (Au)]. Neutron pulse having strength of (1.2±0.3)×109 neutrons/pulse with a pulse width of 46±5ns is produced by “MEPF-12” device operated at a filling gas (deuterium + 0.5% krypton) pressure of 3 mbar. The fast 2.45 MeV D–D neutrons are thermalized before irradiating the sample. The decay gammas from the radioisotopes 165mDy (T1/2=1.26min.), 56Mn (T1/2=2.58hrs.), and 198Au (T1/2=2.69days) produced via reactions, 164Dy(n,γ)165mDy, 55Mn(n,γ) 56Mn, and 197Au(n,γ) 198Au respectively are counted off-line in a lead shielded well type 76×76mm2 NaI(Tl) detector coupled to a calibrated 2048 channel analyzer. The values of half-lives evaluated from the measured decay gammas, 1.43±0.3min., 2.56±0.5hrs. and 2.84±0.6days respectively for the radioisotopes of Dy, Mn and Au, are seen to be close to the values reported in literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号