首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Resonant Homoclinic Flip Bifurcations   总被引:6,自引:0,他引:6  
This paper studies three-parameter unfoldings of resonant orbit flip and inclination flip homoclinic orbits. First, all known results on codimension-two unfoldings of homoclinic flip bifurcations are presented. Then we show that the orbit flip and inclination flip both feature the creation and destruction of a cusp horseshoe. Furthermore, we show near which resonant flip bifurcations a homoclinic-doubling cascade occurs. This allows us to glue the respective codimension-two unfoldings of homoclinic flip bifurcations together on a sphere around the central singularity. The so obtained three-parameter unfoldings are still conjectural in part but constitute the simplest, consistent glueings.  相似文献   

2.
We consider an autoparametric system consisting of an oscillator coupled with an externally excited subsystem. The oscillator and the subsystem are in one-to-one internal resonance. The excited subsystem is in primary resonance. The method of second-order averaging is used to obtain a set of autonomous equations of the second-order approximations to the externally excited system with autoparametric resonance. The Šhilnikov-type homoclinic orbits and chaotic dynamics of the averaged equations are studied in detail. The global bifurcation analysis indicates that there exist the heteroclinic bifurcations and the Šhilnikov-type homoclinic orbits in the averaged equations. The results obtained above mean the existence of the amplitude-modulated chaos for the Smale horseshoe sense in the externally excited system with autoparametric resonance. Furthermore, a detailed bifurcation analysis of the dynamic (periodic and chaotic) solutions of the averaged equations is presented. Nine branches of dynamic solutions are found. Two of these branches emerge from two Hopf bifurcations and the other seven are isolated. The limit cycles undergo symmetry-breaking, cyclic-fold and period-doubling bifurcations, whereas the chaotic attractors undergo attractor-merging and boundary crises. Simultaneous occurrence of the limit cycle and chaotic attractors, homoclinic orbits, intermittency chaos and homoclinic explosions are also observed.  相似文献   

3.
The global bifurcations and multi-pulse orbits of an aero-thermo-elastic functionally graded material (FGM) truncated conical shell under complex loads are investigated with the case of 1:2 internal resonance and primary parametric resonance. The method of multiple scales is utilized to obtain the averaged equations. Based on the averaged equations obtained, the normal form theory is employed to find the explicit expressions of normal form associated with a double zero and a pair of pure imaginary eigenvalues. The energy-phase method developed by Haller and Wiggins is used to analyze the multi-pulse homoclinic bifurcations and chaotic dynamics of the FGM truncated conical shell. The analytical results obtained here indicate that there exist the multi-pulse Shilnikov-type homoclinic orbits for the resonant case which may result in chaos in the system. Homoclinic trees which describe the repeated bifurcations of multi-pulse solutions are found. The diagrams show a gradual breakup of the homoclinic tree in the system as the dissipation factor is increased. Numerical simulations are presented to illustrate that for the FGM truncated conical shell, the multi-pulse Shilnikov-type chaotic motions can occur. The influence of the structural-damping, the aerodynamic-damping, and the in-plane and transverse excitations on the system dynamic behaviors is also discussed by numerical simulations. The results obtained here mean the existence of chaos in the sense of the Smale horseshoes for the FGM truncated conical shell.  相似文献   

4.
We consider a pendulum subjected to linear feedback control with periodic desired motions. The pendulum is assumed to be driven by a servo-motor with small time constant, so that the feedback control system can be approximated by a periodically forced oscillator. It was previously shown by Melnikov's method that transverse homoclinic and heteroclinic orbits exist and chaos may occur in certain parameter regions. Here we study local bifurcations of harmonics and subharmonics using the second-order averaging method and Melnikov's method. The Melnikov analysis was performed by numerically computing the Melnikov functions. Numerical simulations and experimental measurements are also given and are compared with the previous and present theoretical predictions. Sustained chaotic motions which result from homoclinic and heteroclinic tangles for not only single but also multiple hyperbolic periodic orbits are observed. Fairly good agreement is found between numerical simulation and experimental results.  相似文献   

5.
The multi-pulse homoclinic orbits and chaotic dynamics for an axially moving viscoelastic beam are investigated in the case of 1:2 internal resonance. On the basis of the modulation equations derived by the method of multiple scales, the theory of normal form is utilized to find the explicit formulas of normal form associated with a double zero and a pair of pure imaginary eigenvalues. The energy-phase method is employed to analyze the global bifurcations for the axially moving viscoelastic beam. The results obtained here indicate that there exist the Silnikov-type multi-pulse orbits homoclinic to certain invariant sets for the resonant case, leading to chaos in the system. Homoclinic trees which describe the repeated bifurcations of multi-pulse solutions are found. To illustrate the theoretical predictions, we present visualizations of these complicated structures.  相似文献   

6.
In this paper we study the existence of heteroclinic cycles in generic unfoldings of nilpotent singularities. Namely we prove that any nilpotent singularity of codimension four in \mathbbR4{\mathbb{R}^4} unfolds generically a bifurcation hypersurface of bifocal homoclinic orbits, that is, homoclinic orbits to equilibrium points with two pairs of complex eigenvalues. We also prove that any nilpotent singularity of codimension three in \mathbbR3{\mathbb{R}^3} unfolds generically a bifurcation curve of heteroclinic cycles between two saddle-focus equilibrium points with different stability indexes. Under generic assumptions these cycles imply the existence of homoclinic bifurcations. Homoclinic orbits to equilibrium points with complex eigenvalues are the simplest configurations which can explain the existence of complex dynamics as, for instance, strange attractors. The proof of the arising of these dynamics from a singularity is a very useful tool, particularly for applications.  相似文献   

7.
Wu  Tiantian  Huan  Songmei  Liu  Xiaojuan 《Nonlinear dynamics》2023,111(10):9011-9024

Sliding dynamics is a peculiar phenomenon to discontinuous dynamical systems, while homoclinic orbits play a role in studying the global dynamics of dynamical systems. This paper provides a method to ensure the existence of sliding homoclinic orbits of three-dimensional piecewise affine systems. In addition, sliding cycles are obtained by bifurcations of the systems with sliding homoclinic orbits to saddles. Two examples with simulations of sliding homoclinic orbits and sliding cycles are provided to illustrate the effectiveness of the results.

  相似文献   

8.
The nonlinear behavior of an inclined cable subjected to a harmonic excitation is investigated in this paper. The Galerkin’s method is applied to the partial differential governing equations to obtain a two-degree-of-freedom nonlinear system subjected to harmonic excitation. The nonlinear systems in the presence of both external and 1:1 internal resonances are transformed to the averaged equations by using the method of averaging. The averaged equations are numerically examined to obtain the steady-state responses and chaotic solutions. Five cascades of period-doubling bifurcations leading to chaotic solutions, 3-periodic solutions leading to chaotic solution, boundary crisis phenomena, as well as the Shilnikov mechanism for chaos, are observed. In order to study the global dynamics of an inclined cable, after determining the averaged equations of motion in a suitable form, a new global perturbation technique developed by Kova?i? and Wiggins is used. This technique provides analytical results for the critical parameter values at which the dynamical system, through the Shilnikov type homoclinic orbits, possesses a Smale horseshoe type of chaos.  相似文献   

9.
We study bifurcations, calledN-homoclinic bifurcations, which produce homoclinic orbits roundingN times (N2) in some tubular neighborhood of original homoclinic orbit. A family of vector fields undergoes such a bifurcation when it is a perturbation of a vector field with a homoclinic orbit.N-Homoclinic bifurcations are divided into two cases; one is that the linearization at the equilibrium has only real principal eigenvalues, and the other is that it has complex principal eigenvalues. We treat the former case, espcially that linearization has only one unstable eigenvalue. As main tools we use a topological method, namely, Conley index theory, which enables us to treat more degenerate cases than those studied by analytical methods.  相似文献   

10.
The Melnikov method is important for detecting the presence of transverse homoclinic orbits and the occurrence of homoclinic bifurcations.Unfortunately,the traditional Melnikov methods strongly depend on small parameters,which do not exist in most practical systems.Those methods are limited in dealing with the systems with strong nonlinearities.This paper presents a procedure to study the chaos and sub-harmonic resonance of strongly nonlinear practical systems by employing a homotopy method that is used ...  相似文献   

11.
We consider an autoparametric system which consists of an oscillator coupled with a parametrically excited subsystem. The oscillator and the subsystem are in one-to-one internal resonance. The excited subsystem is in principal parametric resonance. The system contains the most general type of quadratic and cubic non-linearities. The method of second-order averaging is used to yield a set of autonomous equations of the second-order approximations to the parametric excited system with autoparametric resonance. The Shilnikov-type multi-pulse orbits and chaotic dynamics of the averaged equations are studied in detail. The global bifurcation analysis indicates that there exist the heteroclinic bifurcations and the Shilnikov-type multi-pulse homoclinic orbits in the averaged equations. The results obtained above mean the existence of amplitude-modulated chaos in the Smale horseshoe sense in the parametric excited system with autoparametric resonance. The Shilnikov-type multi-pulse chaotic motions of the parametric excited system with autoparametric resonance are also found by using numerical simulation.  相似文献   

12.
In this paper we investigate global bifurcations in the motion of parametrically excited, damped thin plates. Using new mathematical results by Kovai and Wiggins in finding homoclinic and heteroclinic orbits to fixed points that are created in a resonance resulting from perturbation, we are able to obtain explicit conditions under which Silnikov homoclinic orbits occur. Furthermore, we confirm our theoretical predictions by numerical simulations.  相似文献   

13.
We study bifurcations of two types of homoclinic orbits—a homoclinic orbit with resonant eigenvalues and an inclination-flip homoclinic orbit. For the former, we prove thatN-homoclinic orbits (N3) never bifurcate from the original homoclinic orbit. This answers a problem raised by Chow-Deng-Fiedler (J. Dynam. Diff. Eq. 2, 177–244, 1990). For the latter, we investigate mainlyN-homoclinic orbits andN-periodic orbits forN=1, 2 and determine whether they bifurcate or not under an additional condition on the eigenvalues of the linearized vector field around the equilibrium point.  相似文献   

14.
15.
The global bifurcations in mode of a nonlinear forced dynamics of suspended cables are investigated with the case of the 1:1 internal resonance. After determining the equations of motion in a suitable form, the energy phase method proposed by Haller and Wiggins is employed to show the existence of the Silnikov-type multi-pulse orbits homoclinic to certain invariant sets for the two cases of Hamiltonian and dissipative perturbation. Furthermore, some complex chaos behaviors are revealed for this class of systems.  相似文献   

16.
In this paper,a non-existence condition for homoclinic and heteroclinic orbits in n-dimensional,continuous-time,and smooth systems is obtained.Based on this result and an elementary example,it can be conjectured that there is a fourth kind of chaos in polynomial ordinary differential equation(ODE) systems characterized by the nonexistence of homoclinic and heteroclinic orbits.  相似文献   

17.
Algaba  A.  Freire  E.  Gamero  E.  Rodríguez-Luis  A. J. 《Nonlinear dynamics》1998,16(4):369-404
We analyze a modified van der Pol–Duffing electronic circuit, modeled by a tridimensional autonomous system of differential equations with Z2-symmetry. Linear codimension-one and two bifurcations of equilibria give rise to several dynamical behaviours, including periodic, homoclinic and heteroclinic orbits. The local analysis provides, in first approximation, the different bifurcation sets. These local results are used as a guide to apply the adequate numerical methods to obtain a global understanding of the bifurcation sets. The study of the normal form of the Hopf bifurcation shows the presence of cusps of saddle-node bifurcations of periodic orbits. The existence of a codimension-four Hopf bifurcation is also pointed out. In the case of the Takens–Bogdanov bifurcation, several degenerate situations of codimension-three are analyzed in both homoclinic and heteroclinic cases. The existence of a Hopf–Shil'nikov singularity is also shown.  相似文献   

18.
Weiqin Yu  Fangqi Chen 《Meccanica》2010,45(4):567-575
Orbits homoclinic to resonances in mode interactions of an imperfect circular plate with 1:1 internal resonance are investigated. The case of primary resonance is considered. The damping force is not included in the analysis. The energy-phase criterion is used to give a fairly complete picture of the complex dynamics associated with orbits homoclinic to the resonances. A saddle-node bifurcation of homoclinic orbits occurs. The existence of homoclinic orbits in the unperturbed system may lead to chaos in the sense of Smale horseshoes under perturbation.  相似文献   

19.
Homoclinic bifurcation at resonant eigenvalues   总被引:10,自引:0,他引:10  
We consider a bifurcation of homoclinic orbits, which is an analogue of period doubling in the limit of infinite period. This bifurcation can occur in generic two parameter vector fields when a homoclinic orbit is attached to a stationary point with resonant eigenvalues. The resonance condition requires the eigenvalues with positive/negative real part closest to zero to be real, simple, and equidistant to zero. Under an additional global twist condition, an exponentially flat bifurcation of double homoclinic orbits from the primary homoclinic branch is established rigorously. Moreover, associated period doublings of periodic orbits with almost infinite period are detected. If the global twist condition is violated, a resonant side switching occurs. This corresponds to an exponentially flat bifurcation of periodic saddle-node orbits from the homoclinic branch.Partially supported by DARPA and NSF.Partially supported by the Deutsche Forschungsgemeinschaft and by Konrad-Zuse-Zentrum für Informationstechnik Berlin.  相似文献   

20.
In this paper, we first give a sufficient condition which assures that a linear differential equation depending on a small parameter admits an exponential dichotomy onR, then we use the result obtained here on exponential dichotomies to investigate the existence of transversal homoclinic orbits of perturbed differential systems in two degenerate cases and obtain a Melnikov-type vector. The results on exponential dichotomies of this paper provide us a tool of proving the transversality of homoclinic orbits in studying degenerate bifurcations.This work is supported by NSF of China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号