首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dynamics of an analytic reversible vector field (X,) is studied in with one real parameter close to 0; X=0 is a fixed point. The differential Dx (0,0) generates an oscillatory dynamics with a frequency of order 1—due to two simple, opposite eigenvalues lying on the imaginary axis—and it also generates a slow dynamics which changes from a hyperbolic type—eigenvalues are —to an elliptic type—eigenvalues are —as passes trough 0. The existence of reversible homoclinic connections to periodic orbits is known for such vector fields. In this paper we study a particular subclass of such vector fields, obtained by small reversible perturbations of the normal form. We give an explicit condition on the perturbation, generically satisfied, which prevents the existence of a homoclinic connections to 0 for the perturbed system. The normal form system of any order admits a reversible homoclinic connection to 0, which then does not survive under perturbation of higher order. It will be seen that normal form essentially decouples the hyperbolic and elliptic part of the linearization to any chosen algebraic order. However, this decoupling does not persist arbitrary reversible perturbation, which finally causes the appearance of small amplitude oscillations.  相似文献   

2.
In this work, we make use of numerical experiments to explore our original theoretical analysis of two-phase flow in heterogeneous porous media (Quintard and Whitaker, 1988). The calculations were carried out with a two-region model of a stratified system, and the parameters were chosen be consistent with practical problems associated with groundwater flows and petroleum reservoir recovery processes. The comparison between theory (the large-scaled averaged equations) and experiment (numerical solution of the local volume averaged equations) has allowed us to identify conditions for which the quasi-static theory is acceptable and conditions for which a dynamic theory must be used. Byquasi-static we mean the following: (1) The local capillary pressure,everywhere in the averaging volume, can be set equal to the large-scale capillary pressure evaluated at the centroid of the averaging volume and (2) the large-scale capillary pressure is given by the difference between the large-scale pressures in the two immiscible phases, and is therefore independent of gravitational effects, flow effects and transient effects. Bydynamic, we simply mean a significant departure from the quasi-static condition, thus dynamic effects can be associated with gravitational effects, flow effects and transient effects. To be more precise about the quasi-static condition we need to refer to the relation between the local capillary pressure and the large-scale capillary pressure derived in Part I (Quintard and Whitaker, 1990). Herep c ¦y represents the local capillary pressure evaluated at a positiony relative to the centroid of the large-scale averaging volume, and {p c x represents the large-scale capillary pressure evaluated at the centroid.In addition to{p c } c being evaluated at the centroid, all averaged terms on the right-hand side of Equation (1) are evaluated at the centroid. We can now write the equations describing the quasi-static condition as , , This means that the fluids within an averaging volume are distributed according to the capillary pressure-saturation relationwith the capillary pressure held constant. It also means that the large-scale capillary pressure is devoid of any dynamic effects. Both of these conditions represent approximations (see Section 6 in Part I) and one of our main objectives in this paper is to learn something about the efficacy of these approximations. As a secondary objective we want to explore the influence of dynamic effects in terms of our original theory. In that development only the first four terms on the right hand side of Equation (1) appeared in the representation for the local capillary pressure. However, those terms will provide an indication of the influence of dynamic effects on the large-scale capillary pressure and the large-scale permeability tensor, and that information provides valuable guidance for future studies based on the theory presented in Part I.Roman Letters A scalar that maps {}*/t onto - A scalar that maps {}*/t onto - A interfacial area between the -region and the -region contained within, m2 - A interfacial area between the -region and the -region contained within, m2 - A interfacial area between the -region and the -region contained within, m2 - a vector that maps ({}*/t) onto , m - a vector that maps ({}*/t) onto , m - b vector that maps ({p}– g) onto , m - b vector that maps ({p}– g) onto , m - B second order tensor that maps ({p}– g) onto , m2 - B second order tensor that maps ({p}– g) onto , m2 - c vector that maps ({}*/t) onto , m - c vector that maps ({}*/t) onto , m - C second order tensor that maps ({}*/t) onto , m2 - C second order tensor that maps ({}*/t) onto . m2 - D third order tensor that maps ( ) onto , m - D third order tensor that maps ( ) onto , m - D second order tensor that maps ( ) onto , m2 - D second order tensor that maps ( ) onto , m2 - E third order tensor that maps () onto , m - E third order tensor that maps () onto , m - E second order tensor that maps () onto - E second order tensor that maps () onto - p c =(), capillary pressure relationship in the-region - p c =(), capillary pressure relationship in the-region - g gravitational vector, m/s2 - largest of either or - - - i unit base vector in thex-direction - I unit tensor - K local volume-averaged-phase permeability, m2 - K local volume-averaged-phase permeability in the-region, m2 - K local volume-averaged-phase permeability in the-region, m2 - {K } large-scale intrinsic phase average permeability for the-phase, m2 - K –{K }, large-scale spatial deviation for the-phase permeability, m2 - K –{K }, large-scale spatial deviation for the-phase permeability in the-region, m2 - K –{K }, large-scale spatial deviation for the-phase permeability in the-region, m2 - K * large-scale permeability for the-phase, m2 - L characteristic length associated with local volume-averaged quantities, m - characteristic length associated with large-scale averaged quantities, m - I i i = 1, 2, 3, lattice vectors for a unit cell, m - l characteristic length associated with the-region, m - ; characteristic length associated with the-region, m - l H characteristic length associated with a local heterogeneity, m - - n unit normal vector pointing from the-region toward the-region (n =–n ) - n unit normal vector pointing from the-region toward the-region (n =–n ) - p pressure in the-phase, N/m2 - p local volume-averaged intrinsic phase average pressure in the-phase, N/m2 - {p } large-scale intrinsic phase average pressure in the capillary region of the-phase, N/m2 - p local volume-averaged intrinsic phase average pressure for the-phase in the-region, N/m2 - p local volume-averaged intrinsic phase average pressure for the-phase in the-region, N/m2 - p –{p }, large scale spatial deviation for the-phase pressure, N/m2 - p –{p }, large scale spatial deviation for the-phase pressure in the-region, N/m2 - p –{p }, large scale spatial deviation for the-phase pressure in the-region, N/m2 - P c p –{p }, capillary pressure, N/m2 - {pc}c large-scale capillary pressure, N/m2 - r 0 radius of the local averaging volume, m - R 0 radius of the large-scale averaging volume, m - r position vector, m - , m - S /, local volume-averaged saturation for the-phase - S * {}*{}*, large-scale average saturation for the-phaset time, s - t time, s - u , m - U , m2 - v -phase velocity vector, m/s - v local volume-averaged phase average velocity for the-phase in the-region, m/s - v local volume-averaged phase average velocity for the-phase in the-region, m/s - {v } large-scale intrinsic phase average velocity for the-phase in the capillary region of the-phase, m/s - {v } large-scale phase average velocity for the-phase in the capillary region of the-phase, m/s - v –{v }, large-scale spatial deviation for the-phase velocity, m/s - v –{v }, large-scale spatial deviation for the-phase velocity in the-region, m/s - v –{v }, large-scale spatial deviation for the-phase velocity in the-region, m/s - V local averaging volume, m3 - V volume of the-phase in, m3 - V large-scale averaging volume, m3 - V capillary region for the-phase within, m3 - V capillary region for the-phase within, m3 - V c intersection of m3 - V volume of the-region within, m3 - V volume of the-region within, m3 - V () capillary region for the-phase within the-region, m3 - V () capillary region for the-phase within the-region, m3 - V () , region in which the-phase is trapped at the irreducible saturation, m3 - y position vector relative to the centroid of the large-scale averaging volume, m Greek Letters local volume-averaged porosity - local volume-averaged volume fraction for the-phase - local volume-averaged volume fraction for the-phase in the-region - local volume-averaged volume fraction for the-phase in the-region - local volume-averaged volume fraction for the-phase in the-region (This is directly related to the irreducible saturation.) - {} large-scale intrinsic phase average volume fraction for the-phase - {} large-scale phase average volume fraction for the-phase - {}* large-scale spatial average volume fraction for the-phase - –{}, large-scale spatial deviation for the-phase volume fraction - –{}, large-scale spatial deviation for the-phase volume fraction in the-region - –{}, large-scale spatial deviation for the-phase volume fraction in the-region - a generic local volume-averaged quantity associated with the-phase - mass density of the-phase, kg/m3 - mass density of the-phase, kg/m3 - viscosity of the-phase, N s/m2 - viscosity of the-phase, N s/m2 - interfacial tension of the - phase system, N/m - , N/m - , volume fraction of the-phase capillary (active) region - , volume fraction of the-phase capillary (active) region - , volume fraction of the-region ( + =1) - , volume fraction of the-region ( + =1) - {p } g, N/m3 - {p } g, N/m3  相似文献   

3.
In this paper we develop the averaged form of the Stokes equations in terms of weighting functions. The analysis clearly indicates at what point one must choose a media-specific weighting function in order to achieve spatially smoothed transport equations. The form of the weighting function that produces the cellular average is derived, and some important geometrical theorems are presented.Roman Letters A interfacial area of the- interface associated with the local closure problem, m2 - A e area of entrances and exits for the-phase contained within the averaging system, m2 - A p surface area of a particle, m2 - d p 6V p/Ap, effective particle diameter, m - g gravity vector, m/s2 - I unit tensor - K m permeability tensor for the weighted average form of Darcy's law, m2 - L general characteristic length for volume averaged quantities, m - L p general characteristic length for volume averaged pressure, m - L characteristic length for the porosity, m - L v characteristic length for the volume averaged velocity, m - l characteristic length (pore scale) for the-phase - l i i=1, 2, 3 lattice vectors, m - (y) weighting function - m(–y) (y), convolution product weighting function - v special weighting function associated with the traditional averaging volume - m v special convolution product weighting function associated with the traditional averaging volume - m g general convolution product weighting function - m V unit cell convolution product weighting function - m C special convolution product weighting function for ordered media which produces the cellular average - m D special convolution product weighting function for disordered media - m M master convolution product weighting function for ordered and disordered media - n unit normal vector pointing from the-phase toward the-phase - p pressure in the-phase, N/m2 - pm superficial weighted average pressure, N/m2 - p m intrinsic weighted average pressure, N/m2 - p traditional intrinsic volume averaged pressure, N/m2 - p p p m , spatial deviation pressure, N/m2 - r 0 radius of a spherical averaging volume, m - r m support of the convolution product weighting function, m - r position vector, m - r position vector locating points in the-phase, m - V averaging volume, m3 - V volume of the-phase contained in the averaging volume, m3 - V cell volume of a unit cell, m3 - V velocity vector in the-phase, m/s - vm superficial weighted average velocity, m/s - v m intrinsic weighted average velocity, m/s - V volume of the-phase contained in the averaging volume, m3 - V p volume of a particle, m3 - v traditional superficial volume averaged velocity, m/s - v v p m spatial deviation velocity, m/s - x position vector locating the centroid of the averaging volume or the convolution product weighting function, m - y position vector relative to the centroid, m - y position vector locating points in the-phase relative to the centroid, m Greek Letters indicator function for the-phase - Dirac distribution associated with the- interface - V /V, volume average porosity - m m * . weighted average porosity - mass density of the-phase, kg/m3 - viscosity of the-phase, Ns/m2 - V /V, volume fraction of the-phase  相似文献   

4.
We study isolated singularities of the quasilinear equation in an open set of N , where 1 < p N, p -1 q < N(p — 1)/ (N -p). We prove that, for any positive solution, if a singularity at the origin is not removable then either or u(x)/(x) any positive constant as x 0 where is the fundamental solution of the p-harmonic equation: . Global positive solutions are also classified.  相似文献   

5.
We consider singularly perturbed systems , such that=f(, o, 0). o m , has a heteroclinic orbitu(t). We construct a bifurcation functionG(, ) such that the singular system has a heteroclinic orbit if and only ifG(, )=0 has a solution=(). We also apply this result to recover some theorems that have been proved using different approaches.  相似文献   

6.
7.
For many solid materials the stress relaxation process obeys the universal relationF = – (d/d lnt)max = (0.1 ± 0.01) ( 0 i ), regardless of the structure of the material. Here denotes the stress,t the time, 0 the initial stress of the experiment and i the internal stress. A cooperative model accounting for the similarity in relaxation behaviour between different materials was developed earlier. Since this model has a spectral character, the concepts of linear viscoelasticity are used here to evaluate the corresponding prediction of the dynamic mechanical properties, i.e. the frequency dependence of the storageE () and lossE () moduli. Useful numerical approximations ofE () andE () are also evaluated. It is noted that the universal relation in stress relaxation had a counterpart in the frequency dependence ofE (). The theoretical prediction of the loss factor for high-density polyethylene is compared with experimental results. The agreement is good.  相似文献   

8.
On laminar flow through a uniformly porous pipe   总被引:2,自引:0,他引:2  
Numerous investigations ([1] and [4–9]) have been made of laminar flow in a uniformly porous circular pipe with constant suction or injection applied at the wall. The object of this paper is to give a complete analysis of the numerical and theoretical solutions of this problem. It is shown that two solutions exist for all values of injection as well as the dual solutions for suction which had been noted by previous investigators. Analytical solutions are derived for large suction and injection; for large suction a viscous layer occurs at the wall while for large injection one solution has a viscous layer at the centre of the channel and the other has no viscous layer anywhere. Approximate analytic solutions are also given for small values of suction and injection.

Nomenclature

General r distance measured radially - z distance measured along axis of pipe - u velocity component in direction of z increasing - v velocity component in direction of r increasing - p pressure - density - coefficient of kinematic viscosity - a radius of pipe - V velocity of suction at the wall - r 2/a 2 - R wall or suction Reynolds number, Va/ - f() similarity function defined in (6) - u 0() eigensolution - U(0) a velocity at z=0 - K an arbitrary constant - B K Bernoulli numbers Particular Section 5 perturbation parameter, –2/R - 2 a constant, –K - x / - g(x) f()/ Section 6 perturbation parameter, –R/2 - 2 a constant, –K - g() f() - g c ()=g() near centre of pipe - * point where g()=0 Section 7 2/R - 2 K - t (1–)/ - w(t, ) [1–f(t)]/ - 0, 1 constants - g() f()– 0 - 0/ - 0 a constant - * point where f()=0  相似文献   

9.
In this work we consider transport in ordered and disordered porous media using singlephase flow in rigid porous mediaas an example. We defineorder anddisorder in terms of geometrical integrals that arise naturally in the method of volume averaging, and we show that dependent variables for ordered media must generally be defined in terms of thecellular average. The cellular average can be constructed by means of a weighting function, thus transport processes in both ordered and disordered media can be treated with a single theory based on weighted averages. Part I provides some basic ideas associated with ordered and disordered media, weighted averages, and the theory of distributions. In Part II a generalized averaging procedure is presented and in Part III the closure problem is developed and the theory is compared with experiment. Parts IV and V provide some geometrical results for computer generated porous media.Roman Letters A interfacial area of the- interface contained within the macroscopic region, m2 - Ae area of entrances and exits for the-phase contained within the macroscopic system, m2 - g gravity vector, m/s2 - I unit tensor - K traditional Darcy's law permeability tensor, m2 - L general characteristic length for volume averaged quantities, m - characteristic length (pore scale) for the-phase - (y) weighting function - m(–y) (y), convolution product weighting function - v special weighting function associated with the traditional averaging volume - N unit normal vector pointing from the-phase toward the-phase - p pressure in the-phase, N/m2 - p0 reference pressure in the-phase, N/m2 - p traditional intrinsic volume averaged pressure, N/m2 - r0 radius of a spherical averaging volume, m - r position vector, m - r position vector locating points in the-phase, m - averaging volume, m3 - V volume of the-phase contained in the averaging volume, m3 - V cell volume of a unit cell, m3 - v velocity vector in the-phase, m/s - v traditional superficial volume averaged velocity, m/s - x position vector locating the centroid of the averaging volume or the convolution product weighting function, m - y position vector relative to the centroid, m - y position vector locating points in the-phase relative to the centroid, m Greek Letters indicator function for the-phase - Dirac distribution associated with the- interface - V/V, volume average porosity - mass density of the-phase, kg/m3 - viscosity of the-phase, Ns/m2  相似文献   

10.
An analysis is presented for laminar source flow between parallel stationary porous disks with suction at one of the disks and equal injection at the other. The solution is in the form of an infinite series expansion about the solution at infinite radius, and is valid for all suction and injection rates. Expressions for the velocity, pressure, and shear stress are presented and the effect of the cross flow is discussed.Nomenclature a distance between disks - A, B, ..., J functions of R w only - F static pressure - p dimensionless static pressure, p(a 2/ 2) - Q volumetric flow rate of the source - r radial coordinate - r dimensionless radial coordinate, r/a - R radial coordinate of a point in the flow region - R dimensionless radial coordinate of a point in the flow region, R - Re source Reynolds number, Q/2a - R w wall Reynolds number, Va/ - reduced Reynolds number, Re/r 2 - critical Reynolds number - velocity component in radial direction - u dimensionless velocity component in radial direction, a/ - average radial velocity, Q/2a - u dimensionless average radial velocity, Re/r - ratio of radial velocity to average radial velocity, u/u - velocity component in axial direction - v dimensionless velocity component in axial direction, v - V magnitude of suction or injection velocity - z axial coordinate - z dimensionless axial coordinate, z a - viscosity - density - kinematic viscosity, / - shear stress at lower disk - shear stress at upper disk - 0 dimensionless shear stress at lower disk, - 1 dimensionless shear stress at upper disk, - dimensionless stream function  相似文献   

11.
Mass conservation and linear momentum balance relations for a porous body and any fluid therein, valid at any given length scale in excess of nearest-neighbour molecular separations, are established in terms of local weighted averages of molecular quantities. The mass density field for the porous body at a given scale is used to identify its boundary at this scale, and a porosity field is defined for any pair of distinct length scales. Specific care is paid to the interpretation of the stress tensor associated with each of the body and fluid at macroscopic scales, and of the force per unit volume each exerts on the other. Consequences for the usual microscopic and macroscopic viewpoints are explored.Nomenclature material system; Section 2.1. - porous body (example of a material system); Sections 2.1, 3.1, 4.1 - fluid body (example of a material system); Sections 2.1, 3.1, 4.1 - weighting function; Sections 2.1, 2.3 - ,h weighting function corresponding to spherical averaging regions of radius and boundary mollifying layer of thicknessh; Section 3.2 - Euclidean space; Section 2.1 - V space of all displacements between pairs of points in; Section 2.1 - mass density field corresponding to; (2.3)1 - P , f mass density fields for , ; (4.1) - P momentum density field corresponding to; (2.3)2 - v velocity field corresponding to; (2.4) - S r (X) interior of sphere of radiusr with centre at pointx; (3.3) - boundary ofany region - region in which p > 0 with = ,h; (3.1) - subset of whose points lie at least+h from boundary of ; (3.4) - abbreviated versions of ; Section 3.2, Remark 4 - strict interior of ; (3.7) - analogues of for fluid system ; Section 3.2 - general version of corresponding to any choice of weighting function; (4.6) - interfacial region at scale; (3.8) - 0 scale of nearest-neighbour separations in ; Section 3.2. Remark 1 - porosity field at scales ( 1; 2); (3.9) - pore space at scales ( 1; 2); (3.12)  相似文献   

12.
An in depth study into the development and decay of distorted turbulent pipe flows in incompressible flow has yielded a vast quantity of experimental data covering a wide range of initial conditions. Sufficient detail on the development of both mean flow and turbulence structure in these flows has been obtained to allow an implied radial static pressure distribution to be calculated. The static pressure distributions determined compare well both qualitatively and quantitatively with earlier experimental work. A strong correlation between static pressure coefficient Cp and axial turbulence intensity is demonstrated.List of symbols C p static pressure coefficient = (pw-p)/1/2 - D pipe diameter - K turbulent kinetic energy - (r, , z) cylindrical polar co-ordinates. / 0 - R, y pipe radius, distance measured from the pipe wall - U, V axial and radial time mean velocity components - mean value of u - u, u/ , / - u, , w fluctuating velocity components - axial, radial turbulence intensity - turbulent shear stress - u friction velocity, (u 2 = 0/p) - 0 wall shear stress - * boundary layer thickness A version of this paper was presented at the Ninth Symposium on Turbulence, University of Missouri-Rolla, October 1–3, 1984  相似文献   

13.
An analogue experiment is proposed to simulate flame flickering comprising a free ascending column fed on its side with a light gas (helium) emerging from a vertical slot in ambient air. The convective motion of the helium jet is considered to represent the motion of burnt gases of buoyant jet flames. The helium jet is accelerated by buoyancy effects and the flow field is similar to that of burnt gases observed for real buoyant flames. The vertical velocity profile of the steady helium jet is measured at different vertical distances. The unsteady helium jet is also studied by measuring the instability frequency as a function of ambient pressure at different injection flow rates, and by analyzing the tomography images of the helium jet. The instability morphology is the same as that observed on real buoyant flames. We conclude that this type of instability can be approximately characterized by the maximum vertical velocityu max, and the distance betweenu max in the helium ascending column andu = o in the ambient air. For this type of instability the local vorticity is proportional to which can be influenced by gravity and ambient pressure. Theoretical prediction of the instability frequency as a function of gravity and ambient pressure has been obtained, and is in good agreement with the experimental results.List of symbols C 1,C 2 constants - F instability frequency - F c critical frequency - F m the most amplified frequency - F (K, ) function defined in (11) - g gravitational acceleration - g reduced gravity acceleration g(0-*)/* - k real wave number of the disturbance - K reduced wave numberK=2k - K c reduced wave number of the critical instability mode - K m nondimensional wavenumber of the most amplified mode - L vertical characteristic length (in x direction) - P ambient pressure - u local vertical buoyant velocity (inx direction) - u max local maximum vertical velocity - v local velocity component iny direction (horizontal) - V 0 injection velocity of helium (iny direction) - x vertical distance measured from the leading edge of boundary layer - y horizontal distance measured from the exit plane of the vertical slot - Z(K, ) function defined in equation (11) Greek symbols distance betweenu max in the helium ascending column andu = o in the ambient air - - wavelength of instability - c critical wavelength - m the most amplified wavelength - * helium density at slot exit - 0 ambient air density - * helium dynamic viscosity at slot exit - v * helium kinematic viscosity at slot exit - complex number presented in disturbancee i(kx+t) - i imaginary part of , representing the amplification rate of disturbance - r real part of , where ( r /k) represents the group velocity - reduced complex number of , defined   相似文献   

14.
Zusammenfassung Der Einfluß der Rotation auf das Temperaturprofil und die Wärmeübergangszahl einer turbulenten Rohrströmung im Bereich des thermischen Einlaufs wird theoretisch untersucht und mit Meßwerten verglichen. Es wird angenommen, daß das Geschwindigkeitsprofil voll ausgebildet ist. Die Rotation hat aufgrund der radial ansteigenden Zentrifugalkräfte einen ausgeprägten Einfluß auf die Unterdrückung der turbulenten Bewegung. Dadurch verschlechtert sich die Wärmeübertragung mit steigender Rotations-Reynoldszahl und die thermische Einlauflänge nimmt beträchtlich zu.
Heat transfer in an axially rotating pipe in the thermal entrance region. Part 1: Effect of rotation on turbulent pipe flow
The effects of rotation on the temperature distribution and the heat transfer to a fluid flowing inside a tube are examined by analysis in the thermal entrance region. The theoretical results are compared with experimental findings. The flow is assumed to have a fully developed velocity profile. Rotation was found to have a very marked influence on the suppression of the turbulent motion because of radially growing centrifugal forces. Therefore, a remarkable decrease in heat transfer with increasing rotational Reynolds number can be observed. The thermal entrance length increases remarkably with growing rotational Reynolds number.

Formelzeichen a Temperaturleitzahl - C n , ,C 1,C 3 Konstanten - c p spezifische Wärme bei konstantem Druck - D Rohrdurchmesser - E Funktion nach Gl. (30) - H n Eigenfunktionen - l hydrodynamischer Mischungsweg - l q thermischer Mischungsweg - Massenstrom - N=Re /Re Reynoldszahlenverhältnis - Nu Nusseltzahl - Nu Nusseltzahl für die thermisch voll ausgebildete Strömung - Pr Prandtlzahl - Pr t turbulente Prandtlzahl - Wärmestromdichte - Re * Schubspannungsreynoldszahl - R n Eigenfunktionen - Durchfluß-Reynoldszahl - Re v =D/ Rotations-Reynoldszahl - Ri Richardsonzahl - R Rohrradius - r Koordinate in radialer Richtung - dimensionslose Koordinate in radialer Richtung - T Temperatur - T Temperaturschwankung - T b bulk temperature - mittlere Axialgeschwindigkeit - v Geschwindigkeit - v Geschwindigkeitsschwankung - turbulenter Wärmestrom - dimensionsloser Wandabstand - =1/6 Konstante - Integrationsvariable - Integrationsvariable - , 1, 2, dimensionslose Temperaturen - Wärmeleitzahl - n Eigenwerte - kinematische Viskosität - Dichte - tangentiale Koordinate - , Hilfsfunktionen Indizes m in der Rohrmitte - r radial - w an der Rohrwand - z axial - 0 am Rohreintritt - 0 ohne Rotation - tangential  相似文献   

15.
Motion of discrete particles in a turbulent fluid   总被引:6,自引:0,他引:6  
Summary Various approximations to Basset's equation for the motion of a particle in a viscous fluid have been applied to the complex phenomenon of dispersion in a turbulent fluid. The deviations of the particle motion from the fluid motion, as predicted by the various approximations, is explored, and the frequencies for which this deviation is large are described. The approximations are found to be invalid for such cases as sediment transport and motion of gas bubbles in liquids. For small, 7 micron, liquid or solid particles in air, however, all approximations are shown to be valid for turbulent frequencies below 812 cps.Nomenclature a parameter in equation (2.3) - b parameter in equation (2.3) - c parameter in equation (2.3) - d diameter of sphere - E f energy spectrum of the fluid - E p energy spectrum of the particle - F frequency of oscillation - f 1 parameter defined by equation (2.10) - f 2 parameter defined by equation (2.10) - g acceleration of gravity - N S , Stokes number - s density ratio - t time - t 0 initial time - u f fluid velocity - u p particle velocity - V velocity of sphere - phase angle - parameter in equation (2.8) - amplitude ratio - parameter in equation (2.8) - dynamic viscosity - kinematic viscosity - f density of the fluid - p density of the particle - parameter in equation (2.8) - parameter in equation (2.8) - circular frequency of the motion  相似文献   

16.
Using Green's function method, analytical solutions for transient fully developed natural convection in open-ended vertical circular and two-parallel-plate channels are presented. Different fundamental boundary conditions for these two configurations have been investigated and the corresponding fundamental solutions are obtained. These fundamental solutions may be used to obtain solutions satisfying more general thermal boundary conditions. In terms of the obtained unsteady temperature and velocity profiles, the transient volumetric flow rate, mixing cup emperature and local nusselt number are estimated.Zusammenfassung Für oben und unten offene vertikale Kanäle mit Kreisquerschnitt bzw. als Parallelplattenanordnung werden unter Verwendung der Methode der Greenschen Funktionen analytische Lösungen für die nichtstationäre, vollausgebildete, natürliche Konvektion gefunden und zwar unter Zugrundelegung verschiedener Fundamental-Randbedingungen bezüglich beider Konfigurationen. Die so ermittelten Fundamentallösungen können zur Gewinnung von Lösungen für allgemeine Randbedingungen dienen. Der zeitlich veränderliche Volumenstrom, die Mischtemperatur und die Nusselt-Zahl werden mit Bezug auf die erhaltenen nichtstationären Profile für Temperatur und Geschwindigkeit näher analysiert.
Analytische Lösung für die nichtstationäre vollausgebildete laminare freie Konvektion invertikalen Kanälen
Nomenclature a local heat transfer coefficient based on the area of the heat transfer surface,q/(T w T 0)=±(T/y)w/(Tw–T0), minus and plus signs apply respectively for heating and cooling in case of parallel-plate channel and vice versa in case of a tube - average heat transfer coefficient over the channel - c p specific heat of fluid at constant pressure - f volumetric flow rate, for circular channels and or two-parallel-plate channels - F dimensionless volumetric flow rate,f/(2lvGr*) for circular channels forfw/(lvGr *) for two-parallel-plate channels - g gravitational body force per unit mass (acceleration) - G Green's function - Gr Grashof number,±g(T w–T0)w3/v2 in case of an isothermal boundary of±gqw 4/2kv2 in case of a uniform heat flux (UHF) on the heat transfer boundary, the plus and minus signs apply to upward (heating) and downward (cooling) flows, respectively. ThusGr is a positive number in both cases. - Gr * modified Grashof number,wGr/l - h heat gained or lost by fluid from the entrance up to a particular elevation in the channel, 0 fc p(T mT 0) for all cases - J 0 Bessel function of zero order - k thermal conductivity of fluid - l height of channel - L dimensionless height of channel,1/Gr * - Nu local Nusselt number,|a| w/k - average Nusselt number, - p pressure of fluid inside the channel at any cross-section - p pressure defect at any point,p–p s - p 0 pressure of fluid at the channel entrance - p s hydrostatic pressure, 0 gz where the minus and plus signs are for upward (heating) and downward (cooling) flows, respectively - p dimensionless pressure defect at any point(pw 4)/(0 l 22 Gr 2) - Pr Prandtl number,c p/k - q heat flux at the heat transfer surface,q=±k(T/y)w where the minus and plus signs are, respectively, for cooling and heating in case of circular pipe and vice versa in case of a parallel-plate channel - Ra Rayleigh number,GrPr - Ra * modified Rayleigh number,Gr *Pr - t time - T fluid temperature at any point - T m mixing-cup (mixed-mean) temperature over any cross section, for circular channels, and for two-parallelplate channels - T 0 initial and channel-inlet fluid temperature - T w temperature of the heat-transfer wall - u axial velocity component at any point - U dimensionless axial velocity,uw 2/(lvGr*) - w radius of circular tube or width (between plates) of parallel-plate channel - y radial or transverse coordinate - y dimensionless radial or transverse coordinate,y/w - z axial coordinate - Z dimensional axial coordinate,z/(lGr *) Greek symbols constant appears in Eq. (8) - parameter appears in Eq. (9) which equals the integration of with respect to or volumetric coefficient of thermal expansion - n eigenvalues - parameter appears in Eq. (7) - n eigenvalues - parameter appears in Eq. (12) - n eigenvalues - parameter appears in Eq. (9) - dimensionless temperature,(T–T 0)/(Tw–T0) in case of an isothermal heat transfer boundary and(T–T 0)/(qw/2k) for UHF boundary - m dimensionless mixing cup temperature,(T m–T0)/(Tw–T0) in case of an isothermal heat transfer boundary and(T m–T0)/(qw/2k) for UHF boundary - w dimensionless temperature of the heat-transfer wall, equals unity in case of an isothermal heat transfer boundary and(T w–T0)/(qw/2k) for a UHF boundary - n eigenvalues - dynamic viscosity of fluid - kinematic viscosity of fluid, /0 - fluid density at temperatureT,0[1–(TT 0)] - 0 fluid density atT 0 - demensionless time,tk/(cw2)  相似文献   

17.
Summary The present work deals with the case of a two-dimensional slider bearing with a rigid pad and an elastic bearing. Fluid viscosity is assumed to be only a pressure function. We determined the bearing deformation, the pressure distribution and the load capacity at different values of the inclination angle of the slider, with a numerical integration of the system consisting of the elasticity and Reynolds equations. The results show that, with an iso-viscous fluid, bearing elasticity causes a load capacity decrease. Instead bearing elasticity together with the variation of fluid viscosity due to pressure causes a load capacity greater than that of the iso-viscous case (=0).
Sommario Il presente lavoro studia il problema della coppia prismatica lubrificata con pattino rigido di allungamento infinito e cuscinetto deformabile; si suppone che la viscosità del fluido sia funzione della sola pressione. Il sistema di equazioni, costituito dall'equazione di Reynolds e dall'equazione dell'elasticità, è stato risolto numericamente, determinando la deformazione del cuscinetto, andamento della pressione e la capacità di carico per diversi valori dell'inclinazione del pattino. I risultati dimostrano che, con fluido isoviscoso, la deformabilità del cuscinetto determina una riduzione della capacità di carico. Se si considera, invece, effetto combinato dell'elasticità del cuscinetto e della variazione della viscosità del fluido, la capacità di carico risulta maggiore di quella che si ottiene con fluido isoviscoso (=0).

Nomenclature /L - /L - x/L - x/L - - ¯C CZ/h 1 - E elasticity modulus - h film thickness - H elastic deformation of the bearing - h 1 minimum film thickness - h 2 inlet thickness - inclination of the pad - h Z/h 1 - HZ/h 1 - L pad length - viscosity - 0 viscosity with no over-pressure - p over pressure - p P ec-P rc where:ec=elastic caserc=rigid case - P h 1 2 /60VL - h 2/h 1=1+L/h 1 - FV bearing velocity - W load capacity per unit width - Wh 2 1 /60 VL 2 - Z E h 3 1 /12 0 VL 2 A first version of this paper was presented at the 7th National AIMETA congress, held at Trieste, October 2–5, 1984. This work was supported by C.N.R.  相似文献   

18.
The results of an analytical approximation method to predict the film vaporization are compared with the predictions of a finite difference method of Hermitian type. The analytically estimated rate of vaporization of different hydrocarbons, which is the most important value for practical applications, deviates only a few percents from the numerically estimated value.
Zur Berechnung der Filmverdunstung von Kohlenwasserstoffen in einem Heißluftstrom
Zusammenfassung Es wird ein Näherungsverfahren zur Berechnung der Filmverdunstung dargestellt, bei dem eine vollständige Lösung der miteinander gekoppelten Grenzschichtgleichungen entfallt. Die nach dieser analytischen Methode ermittelte Verdunstung verschiedener Kohlenwasserstoffe wird mit Werten verglichen, die nach einem Differenzenverfahren vom Hermiteschen Typ berechnet wurden. Es zeigt sich, daß die analytisch berechnete Verdunstungsrate, die für praktische Anwendungen wichtigste Größe, nur wenige Prozent von dem numerisch ermittelten Wert abweicht.

Formelzeichen c ew Konzentrationsdifferenz c1e -c 1w - c i Massenkonzentration der Komponentei - cp, cpi spezifische Wärmekapazität bei konstantem Druck des Gemisches — der Komponentei - D 12 binärer Diffusionskoeffizient - f dimensionslose Stromfunktion - f dimensionslose Geschwindigkeit - g () allgemeine Funktion - m 1 Massenstromdichte der Komponente 1 - m * dimensionslose Massenstromdichte, G1. (4.8) - M, Mi Molgewicht, — der Komponentei - P, P i Druck, Partialdruck der Komponentei - Pr Prandtlzahl,C p/ - q Wärmestromdichte - r 1 Verdampfungswärme - R allgemeine Gaskonstante - Sc Schmidtzahl/D 12 - T absolute Temperatur - u Geschwindigkeitskomponente inx-Richtung - v Geschwindigkeitskomponente iny-Richtung - x Längskoordinate - y Querkoordinate - z dimensionslose Konzentration - dimensionslose Funktion/ e e - transformierte Koordinatey - dimensionslose Temperatur (T-T w)/(Te-Tw) - Wärmeleitfähigkeit des Gemisches - Zähigkeit des Gemisches - transformierte Koordinate - Dichte des Gemisches - Stromfunktion Indizes e am Außenrand der Grenzschicht - i Stoffi - w an der Filmoberfläche - 1, 2 Komponente 1, 2 - () Ableitung ()/ n   相似文献   

19.
The Goertler instability of a hypersonic boundary layer and its influence on the wall heat transfer are experimentally analyzed. Measurements, made in a wind tunnel by means of a computerized infrared (IR) imaging system, refer to the flow over two-dimensional concave walls. Wall temperature maps (that are interpreted as surface flow visualizations) and spanwise heat transfer fluctuations are presented. Measured vortices wavelengths are correlated to non-dimensional parameters and compared with numerical predictions from the literature.List of symbols c p Specific heat coefficient at constant pressure of the free stream - F Input (true) image - F 0 Fourier number - Restored image - G Recorded (degraded) image - G Goertler number based on the boundary layer thickness, as defined by Eq. (3) - H System transfer function - M Mach number - Pr Prandtl number - p 0 Stagnation pressure - Exchanged net heat flux - Convective heat flux - Radiative heat flux - r Recovery factor - Re m Unit Reynolds number - Re x Local Reynolds number based on the distance from the leading edge - Re Local Reynolds number based on the boundary layer thickness - Curvature radius - St Stanton number, as defined by Eq. (7) - T aw Adiabatic wall temperature - T w Wall temperature - T 0 Stagnation temperature - t Time - V Free stream velocity - x Streamwise spatial coordinate - y Normal-to-wall spatial coordinate - z Spanwise spatial coordinate - Thermal diffusivity coefficient - Disturbance wavenumber - Non dimensional wavenumber - Boundary layer thickness - Goertler number based on the vortices wavelength - Vortices wavelength - Free stream density - Disturbance total amplification, as defined by Eq. (3) - Disturbance (spatial) growth rate - Non-dimensional growth rate - Perturbation amplitude of a generic quantity - Perturbation amount  相似文献   

20.
Steady-shear and dynamic properties of a pooled sample of cattle synovial fluid have been measured using techniques developed for low viscosity fluids. The rheological properties of synovial fluid were found to exhibit typical viscoelastic behaviour and can be described by the Carreau type A rheological model. Typical model parameters for the fluid are given; these may be useful for the analysis of the complex flow problems of joint lubrication.The two major constituents, hyaluronic acid and proteins, have been successfully separated from the pooled sample of synovial fluid. The rheological properties of the hyaluronic acid and the recombined hyaluronic acid-protein solutions of both equal and half the concentration of the constituents found in the original synovial fluid have been measured. These properties, when compared to those of the original synovial fluid, show an undeniable contribution of proteins to the flow behaviour of synovial fluid in joints. The effect of protein was found to be more prominent in hyaluronic acid of half the normal concentration found in synovial fluid, thus providing a possible explanation for the differences in flow behaviour observed between synovial fluid from certain diseased joints compared to normal joint fluid.Nomenclature A Ratio of angular amplitude of torsion head to oscillation input signal - G Storage modulus - G Loss modulus - I Moment of inertia of upper platen — torsion head assembly - K Restoring constant of torsion bar - N 1 First normal-stress difference - R Platen radius - S (i) Geometric factor in the dynamic property analysis - t 1 Characteristic time parameter of the Carreau model - X, Y Carreau model parameters - Z () Reimann Zeta function of - Carreau model parameter - Shear rate - Apparent steady-shear viscosity - * Complex dynamic viscosity - Dynamic viscosity - Imaginary part of the complex dynamic viscosity - 0 Zero-shear viscosity - 0 Cone angle - Carreau model characteristic time - Density of fluid - Shear stress - Phase difference between torsion head and oscillation input signals - 0 Zero-shear rate first normal-stress coefficient - Oscillatory frequency  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号