首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
It is shown that the square-root van Hove singularity appearing in the density of states ν (E F )∼(E F −E 0)−1/2 as a result of extended saddle-point singularities in the electron spectrum of high-T c superconductors based on hole-type cuprate metal-oxide compounds gives a nonmonotonic dependence of the critical temperature T c on the position of the Fermi level E F relative to the bottom E 0 of the saddle. Because the divergence of ν(E F ) is canceled in the electron-electron interaction constant renormalized by strong-coupling effects, T c approaches zero as E F →E 0, in contrast to the weak-coupling approximation, where in this limit T c approaches a finite (close to maximum) value. The dependence obtained for T c as a function of the doped hole density in the strong-coupling approximation agrees qualitatively with the experimental data for overdoped cuprate metal oxides. Pis’ma Zh. éksp. Teor. Fiz. 67, No. 7, 473–477 (10 April 1998)  相似文献   

2.
The microwave photoresistance of a double GaAs quantum well with two occupied size-quantization sub-bands E 1 and E 2 has been studied at the temperatures T = 1.6–4.2 K in the magnetic fields B < 0.5 T. The microwave photoresistance of such a system has been found to have a maximum amplitude when the maximum of the magneto-intersubband oscillations with the number k = (E 2E 1)ℏωc coincides with the maximum or minimum of the ω/ωc oscillations, where ω is the microwave frequency and ωc is the cyclotron frequency. It has been shown that the resonance photoresistance that appears in the kth maximum of the magneto-intersubband oscillations is determined by the condition ℏω/(E 2E 1) = (j ± 0.2)/k, where k and j are positive integers.  相似文献   

3.
4.
The volume (3D), quasi-two-dimentional (Q2D), and two-dimentional (2D) oscillations of degenerated electrons of the Shubnikov-de Haase reluctance reveal common properties. The region of quantum oscillations is bounded (in the magnetic field) from below by the weak field condition (ωcτt≤1) and from above by the quantum limit condition (ξF≥ħωc/2). The monotonic oscillation component is saturated for the occupied main conduction Em-subband and excitation Ep-subband of dimensional quantization for the Q2D and 2D electron systems in strong magnetic fields. The reluctance of the Q2D system in the quantum limit changes according to a law ∼B α with α ≈ 2.6–2.8. The oscillation amplitude is described by an exponential dependence on the magnetic field strength and temperature, similarly to the 3D case. This is caused by the identity of physical conditions and the topology of resonant escape of the Landau levels out of the Fermi surface. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 3, pp. 33–39, March, 2006.  相似文献   

5.
Summary In the present review of liquid dynamics studies on liquid metals are reported. Particularly the case of liquid lead is reviewed because this case was carefully studied by neutron scattering technique,S(Q,ω) being determined at two widely different temperaturesT=623 K andT=1170 K and therefore different densities. In addition extensive supplementary MD simulations were made using a 16 384-particle system. The simulations ranged from a determination of an effective pair potential for lead to simulation of the density correlation functionsF(Q,t) andF s(Q,t), as well as the longitudinal and transversal current correlation functionsJ 1(Q,t) andJ T(Q,t). The MD simulation ?calibrated? via the experimentalS(Q) andS(Q,ω) was used to prolong the range of neutron data to draw conclusions regarding such quantities as dispersion relations for the current correlationsJ 1(Q,t) andJ T(Q,t), the generalized viscosity functions ν1(Q,t), ν1(Q) and νs(Q). Information regarding bulk viscosity νB(Q) is also gained. Conclusions are drawn regarding the relative importance of the derived pair potential form by comparison to corresponding hard-sphere data. The general framework of linearized hydrodynamic equations for the macroscopic situation transforming to visco-elastic equations of motion for finite wave-length and high frequency works well also for the case of a continuous potential. The region of transition from simple visco-elastic to hydrodynamic behaviour is occurring at wavelengths in the range (12÷20) ? for the cases studied. The spatial properties of the viscosity functions ν1(r), νs(r) and νB(r) are found to correlate well with the range of the radial distribution function for the liquid. The general results for liquid lead probably have wide range of applicability to other simple liquids with similarS(Q) andg(r) properties. The authors have agreed not to receive proofs for correction.  相似文献   

6.
The differential resistance r xx in a GaAs double quantum well with two occupied size-quantization subbands have been studied at temperatures T = 1.6–4.2 K in magnetic fields B < 0.5 T. It has been found that differential resistance r xx vanishes at the maxima of magneto-intersubband oscillations with an increase in the direct current I dc. It has been shown that the discovered r xx ≈ 0 state appears under the condition 2R c E H/ħωc < 1/2, where R c is the cyclotron radius of electrons at the Fermi level, E H is the Hall electric field induced by the current I dc, and ωc is the cyclotron frequency.  相似文献   

7.
For the first time submillimetric microwaves (λ<1 mm) are used to observe Azbel' Kaner cyclotron resonance in metals. The very high frequency used (typicallyF≅400 GHz) gives a large value ofωτ (typically 500) and therefore very sharp peaks. The fundamental resonance fieldH c=m * cω/e is rather high (typically 200 KG), so subharmonicsH c/n can be observed at many values ofH in the field region 0–27 KG. If relatively few electrons participate in the resonance and ifω cτ≧50 (ω c=eH/m * c,τ relaxation time) thenChambers has shown that the line shapes are independent of relaxation time while the fractional linewidthΔH/H varies as l/ωτ. For the belly orbit in pure copper the conditions of Chambers' theory are satisfied forH≧20 KG parallel to [111] axis.m * is a minimum andτ=1.8×10−10 s.  相似文献   

8.
We consider the effect of Coulomb interactions on the average density of states (DOS) of disordered low-dimensional metals for temperatures T and frequencies ω smaller than the inverse elastic life-time 1/τ. Using the fact that long-range Coulomb interactions in two dimensions (2d) generate ln2-singularities in the DOS ν(ω) but only ln-singularities in the conductivity σ(ω), we can re-sum the most singular contributions to the average DOS via a simple gauge-transformation. If σ(ω) > 0, then a metallic Coulomb gapν(ω) ∝ |ω|/e 4 appears in the DOS at T = 0 for frequencies below a certain crossover frequency Ω 2 which depends on the value of the DC conductivity σ(0). Here, - e is the charge of the electron. Naively adopting the same procedure to calculate the DOS in quasi 1d metals, we find ν(ω) ∝ (|ω|/Ω 1)1/2exp(- Ω 1/|ω|) at T = 0, where Ω 1 is some interaction-dependent frequency scale. However, we argue that in quasi 1d the above gauge-transformation method is on less firm grounds than in 2d. We also discuss the behavior of the DOS at finite temperatures and give numerical results for the expected tunneling conductance that can be compared with experiments. Received 28 August 2001 / Received in final form 28 January 2002 Published online 9 July 2002  相似文献   

9.
The dependence of the differential resistance r xx on the dc current density J dc in a wide GaAs quantum well with two occupied size quantization subbands has been investigated at the temperature T = 4.2 K in the magnetic fields B < 1 T. A peak, whose position is given by the relation 2R c eE H = ħωc/2, where R c is the cyclotron radius, E H is the Hall electric field, and ωc is the cyclotron frequency, has been observed in the r xx (J dc) curves at high filling factors. The experimental results are attributed to Zener tunneling of electrons between the Landau levels of different subbands.  相似文献   

10.
Hydrostatic pressure has been used to tune in resonance Raman scattering (RRS) in bulk GaAs. Using a diamond anvil cell, both the photoluminescence peak (PL) and the 2 LO and LO-phonon Raman scattered intensities have been monitored, to establish RRS conditions. When theE 0 gap of GaAs matchesħω S orħω L, the 2 LO and LO-phonon intensity, respectively, exhibit resonance Raman scattering maxima, at pressures determined byħω L. With 647.1 nm radiation (ħω L = 1.916 eV), a sharp and narrow resonance peak at 3.75 GPa is observed for the 2 LO-phonon. At this pressure the 2 LO-phonon goes through its maximum intensity, and falls right on top of the PL peak, revealing thatħω S(2 LO) =E 0. This is the condition for “outgoing” resonance. Experiments with other excitation energies (ħω L) show, that the 2 LO resonance peak-pressure moves to higher pressure with increasingħω L, and the shift follows precisely theE 0 gap. Thus, the 2 LO RRS is an excellent probe to follow theE 0 gap, far beyond the Γ-X cross-over point. A brief discussion of the theoretical expression for resonance Raman cross section is given, and from this the possibility of a double resonance condition for the observed 2 LO resonance is suggested. The LO-phonon resonance occurs at a pressure whenħω LE 0, but the pressure-induced transparency of the GaAs masks the true resonance profile.  相似文献   

11.
Earlier study of quark-hadron phase transition in the Ginzberg-Landau theory is reexamined in the Ising model, so that spatial fluctuations during the transition can be taken into account. Although the dimension of the physical system is 2, as will be argued, bothd=2 andd=4 Ising systems are studied, the latter being theoretically closer to the Ginzberg-Landau theory. The normalized factorial momentsF q are used to quantify multiplicity fluctuations, and the scaling exponentν is used to characterize the scaling properties. It is found by simulation on the Ising lattice thatν becomes a function of the temperatureT nearT c . The average value ofν over a range ofT<T c agrees with the value of 1.3 derived analytically from the Ginzberg-Landau theory. Thus the implications of the mean-field theory are not invalidated by either the introduction of spatial fluctuations or the restriction to a 2D system.  相似文献   

12.
A pronounced step-like (kink) behavior in the temperature dependence of resistivity ρ(T) is observed in the optimally doped Sm1.85Ce0.15CuO4 thin films around T sf = 87 K and attributed to the manifestation of strong-spin fluctuations induced by Sm3+ moments with the energy ħωsf = k B T sf ≃ 7 meV. The experimental data are found to be well fitted by the residual (zero-temperature) ρres, electron-phonon ρe-ph(T) = AT, and electron-electron ρe-e(T) = BT 2 contributions in addition to the fluctuation-induced contribution ρsf(T) due to thermal broadening effects (of the width ωsf). According to the best fit, the plasmon frequency, impurity scattering rate, electron-phonon coupling constant, and Fermi energy are estimated as ωp = 2.1 meV, τ 0 −1 = 9.5 × 10−14 s−1, λ = 1.2, and E F = 0.2 eV, respectively. The text was submitted by the authors in English.  相似文献   

13.
We develop a non-perturbative local moment approach (LMA) for the gapped Anderson impurity model (GAIM), in which a locally correlated orbital is coupled to a host with a gapped density of states. Two distinct phases arise, separated by a level-crossing quantum phase transition: a screened singlet phase, adiabatically connected to the non-interacting limit and as such a generalized Fermi liquid (GFL); and an incompletely screened, doubly degenerate local moment (LM) phase. On opening a gap (δ) in the host, the transition occurs at a critical gap δc, the GFL [LM] phase occurring for δ<δc [ δ>δc] . In agreement with numerical renormalization group (NRG) calculations, the critical δc = 0 at the particle-hole symmetric point of the model, where the LM phase arises immediately on opening the gap. In the generic case by contrast δc > 0, and the resultant LMA phase boundary is in good quantitative agreement with NRG results. Local single-particle dynamics are considered in some detail. The major difference between the two phases resides in bound states within the gap: the GFL phase is found to be characterised by one bound state only, while the LM phase contains two such states straddling the chemical potential. Particular emphasis is naturally given to the strongly correlated, Kondo regime of the model. Here, single-particle dynamics for both phases are found to exhibit universal scaling as a function of scaled frequency ω/ωm 0 for fixed gaps δ/ωm 0, where ωm 0 is the characteristic Kondo scale for the gapless (metallic) AIM; at particle-hole symmetry in particular, the scaling spectra are obtained in closed form. For frequencies |ω|/ωm 0 ≫δ/ωm 0, the scaling spectra are found generally to reduce to those of the gapless, metallic Anderson model; such that for small gaps δ/ωm 0≪ 1 in particular, the Kondo resonance that is the spectral hallmark of the usual metallic Anderson model persists more or less in its entirety in the GAIM.  相似文献   

14.
The static conductivity σ(E) and photoconductivity (PC) at radiation frequencies ħω=10 and 15 meV in Si doped with shallow impurities (density N=1016−6×1016 cm−3, ionization energy ε1≃45 meV) with compensation K=10−4−10−5 in electric fields E=10–250 V/cm are measured at liquid-helium temperatures T. Special measures are taken to prevent the high-frequency part of the background radiation (ħω>16 meV) from striking the sample. It is found that the conductivity σ(E) is due to carrier motion along the D band, which is filled with carriers under the influence of the field E. In fields E<E q (E q ≃100–200 V/cm) the carrier motion consists of hops along localized D states in a 10–15 meV energy band below the bottom of the free band (energy ε=ε1); for E>E q carriers drift along localized D states with energy ε∞ε1−10 meV. An explanation is proposed for the threshold behavior of the field dependence of the photo-and static conductivities. Pis’ma Zh. éksp. Teor. Fiz. 66, No. 4, 232–236 (25 August 1997)  相似文献   

15.
According to recent progresses in the finite size scaling theory of disordered systems, thermodynamic observables are not self-averaging at critical points when the disorder is relevant in the Harris criterion sense. This lack of self-averageness at criticality is directly related to the distribution of pseudo-critical temperatures Tc(i,L) over the ensemble of samples (i) of size L. In this paper, we apply this analysis to disordered Poland-Scheraga models with different loop exponents c, corresponding to marginal and relevant disorder. In all cases, we numerically obtain a Gaussian histogram of pseudo-critical temperatures Tc(i,L) with mean Tcav(L) and width ΔTc(L). For the marginal case c=1.5 corresponding to two-dimensional wetting, both the width ΔTc(L) and the shift [Tc(∞)-Tcav(L)] decay as L-1/2, so the exponent is unchanged (νrandom=2=νpure) but disorder is relevant and leads to non self-averaging at criticality. For relevant disorder c=1.75, the width ΔTc(L) and the shift [Tc(∞)-Tcav(L)] decay with the same new exponent L-1/νrandom (where νrandom ∼2.7 > 2 > νpure) and there is again no self-averaging at criticality. Finally for the value c=2.15, of interest in the context of DNA denaturation, the transition is first-order in the pure case. In the presence of disorder, the width ΔTc(L) ∼L-1/2 dominates over the shift [Tc(∞)-Tcav(L)] ∼L-1, i.e. there are two correlation length exponents ν=2 and that govern respectively the averaged/typical loop distribution.  相似文献   

16.
We have obtained IR absorption spectra of a C2F6 gas and a C2F6 cryosolution in Xe (T = 163 K) in the fundamental and overtone ranges. We have interpreted 28 bands of 12C12CF6 and three bands of 13C12CF6. In the spectral ranges that correspond to vibrations that are combinations with ν1, ν7, and ν5, we observe multiplets, which we attribute to interactions of the type of Fermi resonances between the states ν1(A 1g ) ∼ ν6(A 1g ), ν7(E g ) ∼ ν6 + ν11(E g ) ∼ 2ν8(E g ), ν5(A 2u ) ∼ ν8 + ν 11(A 2u ). We reveal an anomalous intensity distribution in the spectrum of an asymmetric isotopologue. For the basic and isotopic configurations of perfluoroethane, we calculate the coefficients of shapes of vibrations and the intensities of absorption bands. We reveal that the behavior of the groups 12CF3 and 13CF3 is indifferent to the excitation of doubly degenerate stretching vibrations ν7(E g ) and ν10(Eu).  相似文献   

17.
The lower critical field H c1 cyl (T) of a superconducting cylinder with radius r 0ξ(T)≪λ(T) is found on the basis of the Ginzburg-Landau theory with various boundary conditions. These results together with the well-known results for the upper critical field are used to construct phase diagrams in terms of the field versus the reduced radius r 0ξ(T) variables. The jump in the average magnetization at H c1 cyl (T) is calculated as a function of the reduced radius. Pis’ma Zh. éksp. Teor. Fiz. 69, No. 8, 537–542 (25 April 1999)  相似文献   

18.
Within a generalized non-relativistic Fermi-liquid approach we have found general analytical formulae for phase-transition temperatures T c,1(n, H) and T c,2(n, H) (which are nonlinear functions of density, n, and linear of magnetic field, H) for phase transitions in spatially uniform, dense, pure neutron matter from normal to superfluid states with spin-triplet p-wave pairing (similar to anisotropic superfluid phases 3He - A1 and 3He - A2) in steady and homogeneous sufficiently strong magnetic field (but |μ n |HE c < ɛ F (n), where μ n is the magnetic dipole moment of a neutron, E c is the cutoff energy and ɛ F (n)is the Fermi energy in neutron matter). General formulae for T c,1,2(n,H) are valid for arbitrary parameterization of the effective Skyrme forces in neutron matter. We have used for definiteness the so-called SLy2, Gs and RATP parameterizations of the Skyrme forces with different exponents in their power dependence on density n (at sub- and supranuclear densities) from the interval 0.7 n 0n < n c (Skyrme)< 2 n 0, where n 0 =0.17 fm−3 is the nuclear density and n c (Skyrme)is the the critical density of the ferromagnetic instability in superfluid neutron matter. These phase transitions might exist in the liquid outer core of magnetized neutron stars.  相似文献   

19.
The role of low density upflowing field-aligned electron beams (FEBs) on the growth rate of the electron cyclotron waves at the frequencies ω r < Ωe, propagating downward in the direction of the Earth’s magnetic field, has been analysed in the auroral region at ω ee < 1 where ω e is the plasma frequency and Ωe is the gyrofrequency. The FEBs with low to high energy (E b) but with low temperature (T ‖b) have no effect on these waves. The FEBs with E b < 1 keV and T ‖b (> 1.5 keV) have been found to have significant effect on the growth rate. Analysis has revealed that it is mainly the T ‖b which inhibits the growth rate (magnitude) and the range of frequency (bandwidth) of the instability mainly in the higher frequency spectrum. The inhibition in the growth rate and bandwidth increases with increase in T ‖b. The FEBs with less E b (giving drift velocity) reduce growth rate more than the beams with larger E b. The inhibition of growth rate increases with the increase in the ratio ω ee indicating that the beams are more effective at higher altitudes.   相似文献   

20.
The sudden approximation in energy is used to derive analytic formulas that describe the anomalous light-induced drift (LID) of linear molecules absorbing radiation in the rovibrational transition nJ i mJ f (n and m are the ground and excited vibrational states, and J α is the rotational quantum number in the vibrational state α=m, n). It is shown that for all linear molecules with moderate values B≲1 cm−1 of the rotational constant, anomalous LID can always by observed under the proper experimental conditions; temperature T, rotational quantum number J i , and type of transition (P or R). The parameter γ=B[J i (J i +1)−J f (J f +1)] ν n /2k BT (ν m ν n ) is used to derive a condition for observing anomalous LID: γ∼1 (k B is the Boltzmann constant and ν α is the transport rate of collisions of molecules in the vibrational state α and buffer particles at moderate molecular velocities , where is the most probable velocity of the buffer particles). For ν m >ν n anomalous LID can be observed only in P-transitions, while for ν m <ν n it can be observed only in R-transitions. It is shown that anomalous LID is possible for all ratios β=M b /M of the masses of the buffer particles (M b ) and of the resonant particles (M) and any absorption-line broadening (Doppler or homogeneous). The optimum conditions for observing anomalous LID are realized when the absorption line is Doppler-broadened in an atmosphere of medium-weight (β∼1) and heavy (β≫1) buffer particles. In this case, anomalous LID can be observed in the same transition within a broad temperature interval ΔTT. If the buffer particles are light (β≪1) or if the broadening of the absorption line is homogeneous, anomalous LID in the same transition can be observed only within a narrow temperature range ΔTT. Zh. éksp. Teor. Fiz. 115, 1664–1679 (May 1999)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号