首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A two-dimensional liquid chromatography/capillary electrophoresis technique was developed for rapid and comprehensive mapping of cell extracts. The cell extracts were first separated by reversed-phase HPLC based on hydrophobicity. Fractions of the effluent from the HPLC system were collected into 96-well microtiter plates and dried under vacuum. The fractions were reconstituted with deionized water, separated by capillary array electrophoresis based on charge-to-size ratio, and detected by UV absorption at 214 nm. Prior to analysis by multiplexed capillary electrophoresis, the reconstituted fractions were concentrated on-column using large volume sample stacking with polarity switching. In this way, high-resolution analysis of even the minor components in the complicated mixture was possible.  相似文献   

2.
Jia L  Tanaka N  Terabe S 《Electrophoresis》2005,26(18):3468-3478
A two-dimensional (2-D) separation system of coupling chromatography to electrophoresis was developed for profiling Escherichia coli metabolites. Capillary liquid chromatography (LC) with a monolithic silica-octadecyl silica column (500 x 0.2 mm ID) was used as the first dimension, from which the effluent fractions were further analyzed by capillary electrophoresis (CE) acting as the second dimension. Field-enhanced stacking was selectively employed as a concentration strategy to interface the two dimensions, which proved to be beneficial for the detection of metabolites. An artificial sample containing 118 standards, some of which lack chromophores or have weak UV absorbance, was used to optimize the 2-D separation system. Under the optimum conditions, 63 components in the artificial sample having absorbance at 254 nm could be well resolved and detected. The utility of the system was demonstrated by comprehensive analysis of E. coli metabolites. Comparing with the previous 2-D separation system we published in Anal. Chem. 2004, 76, 1419-1428, using a longer monolithic column in the first dimension improved the separation efficiency and offered the possibility of increasing the injection volume without compromising the separation efficiency. In the second dimension, field-enhanced stacking was used to improve the concentration sensitivity of the metabolites, and more metabolites in E. coli cell extract were detected and identified using the developed 2-D separation system. In addition, preliminary investigation for future CE-mass spectrometry coupling was also made in the study by using volatile buffers in the capillary LC and CE techniques.  相似文献   

3.
A simple methodology for converting a commercial CE-MS instrument into an integrated 2-D CE system has been developed. The first-dimensional capillary operates as a typical CE instrument with UV/visible detection. Fractions leaving the first dimension are automatically collected and introduced into the second dimension, performed on a CE-MS apparatus, for analysis. The integrated system allows fractions in the second dimension to be analyzed using various electrophoretic modes. As an example, in this work we performed the separation of two families of antibiotics (nitroimidazoles and tetracyclines) in the first dimension and the subsequent resolution of the antibiotics in each family (nitroimidazoles were resolved by MEKC and tetracyclines by CZE) in the second dimension. The proposed system, which operates in an highly automatic manner, is flexible and allows various combination of electrophoretic modes to be implemented. In addition, the use of a mass spectrometer detector in the second dimension further increases the analytical potential of the system as a result of the high selectivity and wealth of structural information provided by the MS detector.  相似文献   

4.
A peptide separation strategy that combines two-dimensional (2-D) liquid chromatography (LC)-capillary zone electrophoresis (CZE) with tandem mass spectrometry (MS/MS) is described for the identification of proteins in complex mixtures. To test the effectiveness of this strategy, a serum sample was depleted of the high-abundance proteins by methanol precipitation, digested with trypsin to generate a complex peptide mixture, and separated into 96 fractions by reversed-phase (RP)-LC. Compared to ion-exchange LC separations, RPLC provides much higher resolution and peak capacity. Fractions were collected off-line from the RPLC separation, and subjected to short 20 min CZE separations. The separated zones were introduced to the mass spectrometer through a sheathless electrospray ionization interface that is integrated on the separation capillary. The ease of fabrication of the interface and its durability allowed for the analysis of all fractions on a single capillary in a relatively short analysis time. A stable electrospray was produced at nanoliter flowrates by augmenting analyte electrophoretic and electroosmotic mobilities with pressure-assisted flow. Unlike first-dimensional ion-exchange LC fractionation, where there is a large degree of overlap, the CZE-MS results show less than 15% overlap between neighboring RPLC fractions.  相似文献   

5.
Mohan D  Lee CS 《Electrophoresis》2002,23(18):3160-3167
A microdialysis junction is employed as the interface for on-line coupling of capillary isoelectric focusing with transient isotachophoresis-zone electrophoresis in a two-dimensional separation system. Capillary isoelectric focusing not only provides high-resolution separation of tryptic peptides based on their differences in isoelectric point, but also potentially allows the analysis of low-abundance proteins with a typical concentration factor of 50-100 times. Carrier ampholytes, employed for the creation of a pH gradient during focusing, are further utilized as the leading electrolyte in the second separation dimension, transient isotachophoresis-zone electrophoresis. Many peptides which have the same isoelectric point would most likely have different charge-to-mass ratios, and thus different electrophoretic mobilities in zone electrophoresis. Two-dimensional separation of proteolytic peptides is demonstrated using standard proteins, including cytochrome c, ribonuclease A, and carbonic anhydrase II. The maximum peak capacity is estimated to be around approximately 1600 and can be significantly increased by simply increasing the capillary column length and manipulating the range of pH gradient in isoelectric focusing. In addition to enhanced separation efficiency and resolution, this two-dimensional electrokinetic separation system permits sensitive and comprehensive analysis of peptide fragments, especially when integrated with electrospray ionization mass spectrometry for peptide/protein identification.  相似文献   

6.
We report the one- and two-dimensional (1-D and 2-D) capillary electrophoresis separation of Deinococcus radiodurans protein homogenate. Proteins are labeled with the fluorogenic reagent 3-(2-furoyl)quinoline-2-carboxaldehyde (FQ), which reacts with lysine residues and creates a highly fluorescent product. Detection is by laser-induced fluorescence. 1-D capillary sieving electrophoresis (CSE) produces over 150,000 plates and micellar electrokinetic capillary chromatography (MEKC) produces over 900,000 plates for components in a D. radiodurans protein homogenate. In a 2-D separation, proteins are first separated by CSE. Fractions are repetitively transferred to a second capillary for further separation based on MEKC. The 2-D separation has a approximately 550 spot capacity. Over 150 components are partially resolved from the homogenate. Resolution is limited in the first dimension by diffusion of proteins during the long separation period and in the second dimension by the combination of a long fraction-transfer time and short separation period.  相似文献   

7.
Differential detergent fractionation was used to sequentially extract cytosolic, membrane, nuclear, and cytoskeletal fractions from AtT-20 cells. Extracted components were denatured by sodium dodecyl sulfate (SDS) and then labeled with the fluorogenic reagent 3-(2-furoyl) quinoline-1-carboxaldehyde. Both capillary sieving electrophoresis (CSE) and micellar electrokinetic capillary chromatography (MECC) were used to separate labeled components by one-dimensional (1D) electrophoresis. Labeled components were also separated by two-dimensional (2D) capillary electrophoresis; CSE was employed in the first dimension and MECC in the second dimension. Roughly 150 fractions were transferred from the first to the second capillary for this comprehensive analysis in 2.5 h.  相似文献   

8.
A rapid, simple method is proposed here for the identification of the experimental conditions that lead to satisfactory preparative-scale isoelectric focusing enantiomer separations in continuous free-flow electrophoretic units. The method first calls for the use of a commercially available, full-column imaging capillary electrophoretic system to find the background electrolyte composition that generates the largest pI difference between the bands of the enantiomers. The method then calls for the finding of the minimum residence time that permits full development of the pH gradient across the separation chamber of the continuous free-flow electrophoretic unit by measuring the pH in the sample-free carrier electrolyte fractions collected during these runs. Finally, the quality of the predicted preparative-scale separation is verified by analyzing the enantiomer-containing collected fractions by capillary electrophoresis using a 14-sulfated, single-isomer cyclodextrin as resolving agent. The pI difference values and production rate values observed in this work agree well with the literature values that were obtained by much more time-consuming methods.  相似文献   

9.
Capillary electrophoresis can be used successfully to analyse small peptides to give additional information to that obtained using high-performance liquid chromatography (HPLC). The separation of a modified adrenocorticotropic hormone (4-9) fragment (Org 2766) and several of its fragments was investigated using capillary zone electrophoresis. Prediction of migration in aqueous systems using pKa-related data and the migration behaviour using sodium dodecyl sulphate in the buffer are discussed, as is the choice of buffer systems. The electrophoretic patterns are compared with the HPLC separation.  相似文献   

10.
In the present work, a 2-D capillary liquid chromatography method for fractionation and separation of human salivary proteins is demonstrated. Fractionation of proteins according to their pI values was performed in the 1-D employing a strong anion exchange (SAX) column subjected to a wide-range descending pH gradient. Polystyrene-divinylbenzene (PS-DVB) RP columns were used for focusing and subsequent separation of the proteins in the 2-D. The SAX column was presaturated with a high pH buffer (A) consisting of 10 mM amine buffering species, pH 9.0, and elution was performed with a low pH elution buffer (B) having the same buffer composition and concentration as buffer A, but pH 3.5. Isoelectric point fractions eluting from the 1-D column were trapped on PS-DVB trap columns prior to back-flushed elution onto the PS-DVB analytical column for separation of the proteins. The 1-D fraction eluting at pH 9.0-8.7 was chosen for further analysis. After separation on the RP analytical column, nine RP protein fractions were collected and tryptic digested for subsequent analyses by MALDI TOF MS and column switching capillary LC coupled to ESI TOF MS and ESI QTOF MS. Eight proteins and two peptides were identified in the pH 9.0-8.7 fraction using peptide mass fingerprinting and uninterpreted MS/MS data.  相似文献   

11.
2-D nanoscale LC combined with a triple quadrupole-linear ion trap mass spectrometer was applied to the analysis of a complex peptide mixture. A 2-D dual nanoscale LC-MS/MS system was compared to a conventional one. Peptides were separated with a strong cation exchange (SCX) microcolumn in the first dimension and two C18 nanocolumns were used as second dimension. MS experiments were performed using information-dependent data acquisition, where two precursor ions were selected from an enhanced MS (EMS) or an enhanced multicharged ion (EMC) as survey scan. The major benefit of EMC instead of EMS was a two-fold reduction of the data file and a 15% increase of characterized proteins. The advantage of the 2-D dual nanoscale LC-MS/MS system versus the conventional 2-D nanoscale LC-MS/MS system was reflected in the significant increase of peptides which were successfully identified within the same time frame. The first factor contributing to this increase was that the mass spectrometer was collecting twice the number of relevant MS/MS data. The second factor is the use of twice the number of SCX salt fractions in the first dimension, allowing a better sample fractionation, thereby reducing the number of peptides transferred to the second chromatographic dimension per salt fraction.  相似文献   

12.
Wei J  Gu X  Wang Y  Wu Y  Yan C 《Electrophoresis》2011,32(2):230-237
A novel on-line 2-D system was developed for peptide and protein mapping. The system combines capillary IEF (cIEF) with pressurized CEC (pCEC) using a micro-injection valve as the interface. Sample fractions, which were focused and separated in the first-dimension cIEF based on their differences in pIs, were electrically mobilized and further successively resolved by their differences in size, hydrophobicity, and electrophoretic mobility in the second-dimension pCEC. In the presented system, the valve interface was free of the external electric field in two dimensions for the purpose of stabilization, safety, and facilitating manipulation. In the first dimension, cIEF separation was executed by a one-step method to simplify the operation procedure. Moreover, a home-made electrical decoupler was introduced to isolate the micro-injection valve from the cIEF electric field. For the second dimension, taking advantage of the combination of hydrodynamic flow with EOF, reversed-phase pCEC not only offers on-column refocusing the effluent fractions, but also brings enhanced separation resolution and elution speed. Separation effectiveness of this 2-D system was demonstrated by the analysis of tryptic digest of BSA and human red blood cell lysate. A theoretical peak capacity of approximately 24,000 has been achieved for BSA digest, which proves its promising potential for the application in proteomics.  相似文献   

13.
Reversed-phase HPLC was coupled on-line to a rapid, competitive affinity probe capillary electrophoresis (APCE) assay to screen mixtures for compounds that inhibit protein-ligand interactions. The Fyn Src homology 2 (SH2) domain and its phosphopeptide binding partner were used as a model interaction for demonstration of this technique. In the method, mixtures containing possible inhibitors of binding were separated by HPLC at a flow rate of 0.3 mL/min. A small portion of effluent was directed to a fluidic tee where it was mixed on-line with Fyn SH2 domain and a fluorescent phosphopeptide ("affinity probe") known to bind selectively to Fyn SH2 domain. Electropherograms of the reaction mixture were collected on-line at approximately 6s intervals using a flow-gated interface to control injections onto the capillary electrophoresis with laser-induced fluorescence system. The resulting electropherograms contained two peaks, one corresponding to the free affinity probe and the other a complex of the affinity probe and Fyn SH2 domain. Compounds that bound the protein were detected as a decrease in the peak height of the complex and an increase in the peak height of affinity probe with relative standard deviations of <5%. The assay was shown to resolve multiple peptidergic inhibitors and selectively detect them within a complex mixture of peptides. Signals were dependent upon both concentration of active peptide and its potency in binding inhibition. Detection limits were in the range of 2-11 microM depending upon the peptide. Common organic solvents used in HPLC were shown to have minimal effect in the on-line measurement up to approximately 60% in the mobile phase.  相似文献   

14.
In this work, a capillary electrophoretic method for the rapid quantitation of atorvastatin (AT) in a lipitor tablet was investigated and developed. Method development included studies of the effect of applied potential, buffer concentration, buffer pH, and hydrodynamic injection time on the electrophoretic separation. The method was validated with regard to linearity, precision, specificity, LOD, and LOQ. The optimum electrophoretic separation conditions were 25 mM sodium acetate buffer at pH 6, with a separation voltage of 25 kV using a 50 microm capillary of 33 cm total length. Sodium diclofenac was used as an internal standard. Analysis of AT in a commercial lipitor tablet by electrophoresis gave quite high efficiency, coupled with an analysis time of less than 1.2 min in comparison to LC. Once the separation was optimized on capillary, it was further miniaturized to a microchip platform, with linear imaging UV detection using microchip electrophoresis (MCE). Linear imaging UV detection allowed for real-time monitoring of the analyte movement on chip, so that the optimum separation time could be easily determined. This microchip electrophoretic method was compared to the CE method with regard to speed, efficiency, precision, and LOD. This work represents the most rapid and first reported analysis of AT using MCE.  相似文献   

15.
A version of capillary electrophoresis with indirect spectrophotometric detection and the hydrodynamic suppression of electroosmotic flow is studied. It is shown that, to improve the reliability of ion identification, one should calculate electrophoretic mobilities of ions or migration times corrected with regard to the electroosmotic flow rate. Correlations between electrophoretic peak areas of ions and their electrophoretic mobilities are derived. In the studied version of capillary electrophoresis, the accuracy of measuring anion concentrations can be improved using the internal standard method.  相似文献   

16.
A sequential combination of reversed-phase liquid chromatography–mass spectrometry (LC–MS) and capillary electrophoresis (CE) has been explored in order to perform separation and characterization of a multicomponent peptide mixture from the synthesis of leuprolide. The mixture was first analyzed and fractionated by LC–MS, and the collected fractions were subsequently separated by CE. Unambiguous identification of the electrophoretic peaks was achieved by injecting the collected fractions separately and spiking the leuprolide crude mixture. Furthermore, structural information about the components of the mixture provided by several semi-empirical migration models has been used to check the accuracy of the structures previously proposed by LC–MS. Combination of the two orthogonal techniques results in an enhancement of their individual selectivity characteristics.  相似文献   

17.
Mao Y  Zhang X 《Electrophoresis》2003,24(18):3289-3295
A comprehensive two-dimensional (2-D) separation system, coupling capillary reverse-phase liquid chromatography (cRPLC) to capillary isoelectric focusing (CIEF), is described for protein and peptide mapping. cRPLC, the first dimension, provided high-resolution separations for salt-free proteins. CIEF, the second dimension with an orthogonal mechanism to cRPLC afforded excellent resolution capability for proteins with efficient protein enrichment. Since all sample fractions in cRPLC effluents could be transferred to the CIEF dimensions, the combination of the two high-efficiency separations resulted in maximal separation capabilities of each dimension. Separation effectiveness of this approach was demonstrated using complex protein/peptide samples, such as yeast cytosol and a BSA tryptic digest. A peak capacity of more than 10 000 had been achieved. A laser-induced fluorescence (LIF) detector, developed for this system, allowed for high-sensitive detection, with a fmol level of peptide detection for the BSA digest. FITC and BODIPY maleimide were used to tag the proteins, and the latter was found better both for separation and detection in our 2-D system.  相似文献   

18.
Ye M  Zou H  Liu Z  Ni J 《Journal of chromatography. A》2000,869(1-2):385-394
Separation of small peptides on ion-exchange capillary electrochromatography (IE-CEC) with strong cation-exchange packing (SCX) as stationary phase was investigated. It was observed that the number of theoretical plates for small peptides varied from 240000 to 460000/m, and the relative standard deviation for t0 and the migration time of peptides were less than 0.57% and 0.27%, respectively for ten consecutive runs. Unusually high column efficiency has been explained by the capillary electrophoretic stacking and chromatofocusing phenomena during the injection and separation of positively charged peptides. The sample buffer concentration had a marked effect on the column efficiency and peak area of the retained peptides. The influences of the buffer concentration and pH value as well as the applied voltage on the separation were investigated. It has been shown that the electrostatic interaction between the positively charged peptides and the SCX stationary phase played a very important role in IE-CEC, which provided the different separation selectivity from those in the capillary electrophoresis and reversed-phase liquid chromatography. A fast separation of ten peptides in less than 3.5 min on IE-CEC by adoption of the highly applied voltage was demonstrated.  相似文献   

19.
将在线富集技术同二维(2D)毛细管电泳(CE)分离相结合同时提高复杂样品中痕量组分的分离度和检测灵敏度.毛细管区带电泳(CZE)作为第一维,分析物根据淌度不同进行分离,第一维流出组分进入第二维毛细管,根据分配系数不同进行胶束电动毛细管色谱(MEKC)分离.采用阳离子选择性耗尽进样(CSEI)在柱预富集,延长进样时间,增大进样量;同时在二维毛细管接口处采用动态pH联接/胶束扫集在线富集技术不仅避免第一维分离组分在接口处扩散,还可进一步压缩样品区带.同常规电动进样CE分离相比,该在线富集二维分离技术的分离能力远远高于一维CZE或MEKC分离,富集倍数达到(0.5~1.2)×104.该法成功应用于人体尿样中四种药物及对映体的分析测定,浓度检出限为0.1~0.3μg/L.进一步研究了人体尿样中四种药物24h内的药代动力学规律.  相似文献   

20.
A novel method has been developed by integration of multi-concentration and two-dimensional(2D) capillary electrophoresis(CE) for simultaneous enhancement of detection sensitivity and separation power in complex samples.Capillary zone electrophoresis(CZE) was used as the first dimension separation according to mobilities,from which the effluent fractions were further analyzed by micellar electrokinetic capillary chromatography(MEKC) acting as the second dimension.Cation-selective exhaustive injection(CSEI) ...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号