首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
动强度和能量耗散规律是研究混凝土动力特性的主要内容。为探究混凝土在冲击荷载作用下的动态力学、变形以及能量演化特征,利用直径为100 mm的霍普金森杆装置对骨料率为0、32%、37%和42%的混凝土试样,分别进行了冲击速度为5、6、7 m/s的冲击压缩试验。探讨了冲击速度和骨料率对试样变形、动强度以及分形维数的影响,建立了动强度关于冲击速度和骨料率的表达式,并对试样吸收能和裂纹表面能之间的关系进行了对比分析。结果表明:混凝土试样破坏时出现了变形滞后现象,破坏形式主要以劈裂拉伸破坏为主;动强度随冲击速度、骨料率的增大而增大,用所建动强度公式可以较好地预估混凝土动强度;混凝土破坏碎块分形维数、吸收能和裂纹表面能均随冲击速度的增大而增大,随骨料率的增大而减小,且吸收能始终高于裂纹表面能,当骨料率为37%时,吸收能转化率最高,约91%转化为裂纹表面能。  相似文献   

2.
A novel high temperature ring-on-ring Kolsky bar technique was employed to investigate the dynamic equibiaxial flexural strength of borosilicate glass at temperatures ranging from room temperature up to 750°C. This technique provided non-contact heating of the glass specimen and prevented thermal shocks in the specimen. Experimental results at the loading rate of 22.5 MN/s showed significant temperature dependence on the flexural strength. To explore the mechanisms of this temperature effect, controlled surface cracks were introduced on the tensile surface of the glass specimens using a Vickers indentation technique. These surface cracks were then heat treated under the same thermal histories as those tested in the high temperature dynamic experiments. The evolution of crack morphologies at 200°C, 550°C and 650°C were examined. The results indicate that residual stress relaxation may play an important role in the strengthening below 200°C, while crack healing and blunting may account for the strengthening above 500°C.  相似文献   

3.
This article describes two techniques used to characterize intact and damaged soda-lime glass at pressures up to ~2 GPa: triaxial compression and confined sleeve. The results of the characterization experiments are described for intact and damaged glass as a function of confinement pressure and interpreted in terms of two pressure-dependent constitutive models, Drucker-Prager and Mohr-Coulomb. An observation is that the slopes of the two models appear to be independent of the degree of damage (intact, predamaged and severely damaged specimens). It is also observed that there is a maximum strength for the damaged glass, i.e., there is a cap on the strength. The compressive response of soda-lime glass is compared to that of a borosilicate glass, and to flyer-plate impact data.  相似文献   

4.
将红外瞬态测温装置引入SHPB冲击实验,确定了不同材料试件的温度标定曲线,并实时测量了冲击下Al合金和伪弹性TiNi合金试样的表面温度。结果表明,2种试样温度变化都经历了加载过程的温度升高,主要不同在于卸载过程,Al合金卸载过程中温度保持最大加载温度不变,而TiNi合金试样卸载过程中温度降低,这反映了2种材料不同的物理变形过程和温度变化机制。直接红外测温的实验结果与根据能量守恒理论计算的温度较好吻合,说明采用的红外测温方法实时测量冲击瞬态温度是可行的。  相似文献   

5.
钱程  蒋明  何源  孙国华 《实验力学》2017,(3):361-370
为研究狗骨式钢框架子结构节点区域在循环荷载作用下的损伤演化规律,采用图像相关技术对3榀、3层、单跨1/3缩尺的狗骨式钢框架子结构底层节点区域的应变场及变形进行了监测,重点分析了不同循环加载方式作用下狗骨式节点区域的应变场、节点域剪切变形的历程,并与传统测试方法所记录结果进行了对比。研究结果表明,加载方式对狗骨式钢框架子结构节点区域的变形、应变及其损伤程度均有显著影响;图像相关技术可获得节点区域的变形及应变场,较传统测试方法更具优势;测点峰值应变及变形同传统方法测试结果吻合良好。  相似文献   

6.
A fatigue damage model is proposed to establish a predictive formula for the fatigue service life of polycarbonate (PC) materials. A damage variable is introduced in terms of remaining fracture strain, and a new fatigue damage evolution relation is derived to characterize the extent of fatigue damage after a certain number of loading cycles. Fatigue tests were conducted to construct the stress amplitude versus the fatigue life curve. After different numbers of cycles of fatigue, the new damage variable for PC materials was measured by pulling damaged specimens to fracture under monotonic loading. Experimental results on damage evolution and fatigue life have a good agreement with those predicted by the proposed damage model.  相似文献   

7.
Static and dynamic behavior of concrete and granite in tension with damage   总被引:2,自引:0,他引:2  
A series of dynamic and static tensile-splitting experiments were performed on concrete and granite specimens to investigate the effect of induced damage on their tensile strength. These experiments were performed as part of a larger effort investigating the penetration process into the two materials. The strain rate each specimen was subjected to remained constant for these experiments, while the level of induced damage was increased. Damage was induced into the specimens through repeated drop-weight impacts and quantified using a statistical technique. The dynamic splitting experiments were performed using a split Hopkinson pressure bar (SHPB), while the static splitting experiments were conducted per the ASTM standard procedures D3967 and C496. As part of the investigation, photoelastic dynamic tensile-splitting experiments were also performed to establish the validity of using static relations for the determination of dynamic tensile strength. The experiments showed that the static splitting strength was highly dependent on the orientation of the induced damage with regard to the applied loading; however the dynamic tensile strength decreased with increasing damage with no apparent dependency on the random damage orientation. Photoelastic experiments have shown that the mechanism of failure changes for the dynamically tested damaged specimens, reducing their dependence on damage orientation.  相似文献   

8.
In this paper, uniaxial compression tests were carried out on a series of composite rock specimens with different dip angles, which were made from two types of rock-like material with different strength. The acoustic emission technique was used to monitor the acoustic signal characteristics of composite rock specimens during the entire loading process. At the same time, an optical non-contact 3 D digital image correlation technique was used to study the evolution of axial strain field and the maximal strain field before and after the peak strength at different stress levels during the loading process. The effect of bedding plane inclination on the deformation and strength during uniaxial loading was analyzed. The methods of solving the elastic constants of hard and weak rock were described. The damage evolution process, deformation and failure mechanism, and failure mode during uniaxial loading were fully determined. The experimental results show that the θ = 0?–45?specimens had obvious plastic deformation during loading, and the brittleness of the θ = 60?–90?specimens gradually increased during the loading process. When the anisotropic angle θincreased from 0?to 90?, the peak strength, peak strain,and apparent elastic modulus all decreased initially and then increased. The failure mode of the composite rock specimen during uniaxial loading can be divided into three categories:tensile fracture across the discontinuities(θ = 0?–30?), slid-ing failure along the discontinuities(θ = 45?–75?), and tensile-split along the discontinuities(θ = 90?). The axial strain of the weak and hard rock layers in the composite rock specimen during the loading process was significantly different from that of the θ = 0?–45?specimens and was almost the same as that of the θ = 60?–90?specimens. As for the strain localization highlighted in the maximum principal strain field, the θ = 0?–30?specimens appeared in the rock matrix approximately parallel to the loading direction,while in the θ = 45?–90?specimens it appeared at the hard and weak rock layer interface.  相似文献   

9.
高周疲劳的损伤-硬化模型   总被引:2,自引:0,他引:2  
两级循环加载条件下,材料的剩余寿命强烈地依赖于加载历史。究其原因,不同加载历史将引起材料的微结构发生不同的变化,使得材料的硬化效果和变形行为表现出明显的差异,从而影响了损伤的演化过程。本文引入硬化状态变量来表征加载历史对疲劳损伤演化过程的影响。通过对两级循环加载下损伤演化规律和剩余寿命的研究,认为在两级(或多级)加载条件下,材料的损伤演化和剩余寿命强烈地依赖于加载历史造成的损伤和硬 化状态。  相似文献   

10.
为研究实时高温作用对花岗岩冲击力学特性的影响,以川藏铁路色季拉山施工区域加里东期花岗岩为研究对象,利用分离式霍普金森杆(SHPB)及同步箱式电阻炉,对20~800 ℃实时高温下的花岗岩试件进行冲击压缩试验,分析高温作用及加载应变率对试件破碎特征、动态抗压强度及能量吸收情况的影响,基于粉晶X射线衍射分析矿物成分变化与花岗岩动力学强度的内在关联。研究表明:20~400 ℃高温试件以脆性劈裂破坏为主,碎片形态呈纺锤形,两端尖锐,而600 ℃高温试件以塑性破坏为主,形状趋于圆钝;试件峰值应力随温度升高具有先增大后减小的变化趋势,200 ℃时达到强度阈值,随后持续降低;单位体积岩石耗散能与加载应变率呈线性正相关关系,与温度呈二次函数关系,与峰值应力呈指数关系,拟合效果良好;石英、云母和长石三种主要矿物成分的含量波动、相态变化等因素共同导致花岗岩动力学强度在200 ℃后逐步劣化。  相似文献   

11.
不同加载状态下TA2钛合金绝热剪切破坏响应特性   总被引:2,自引:1,他引:1  
一般认为绝热剪切现象在宏观上表现为材料动态本构失稳,即热软化大于应变硬化.本文采用帽型受迫剪切试样研究TA2钛合金的动态力学特性和本构失稳过程.首先对剪切区加载应力状态进行理论和数值分析,通过合理设计帽型试样,剪切区变形可近似按剪切状态处理;结合二维数字图像相关法(two-dimensional digital image correlation,DIC-2D)直接测试试样剪切区应变演化,给出帽型受迫剪切实验的等效应力-应变响应曲线.进一步,利用Hopkinson压杆对TA2钛合金开展动态压缩及帽型剪切对比试验研究,比较压缩、剪切试验得到的等效应力-应变曲线,采用"冻结"试样方法分析试样中绝热剪切局域化演化过程,探讨不同加载状态下TA2钛合金的绝热剪切破坏现象及其动态力学响应特性.实验结果表明,在塑性变形初始阶段,动态压缩及剪切加载下的等效应力-应变曲线符合较好,但随塑性损伤发展及绝热剪切带形成,两者出现分离,表明损伤及绝热剪切演化过程与应力状态相关.剪切试样实验得到的本构"软化"特性能够反映绝热剪切带起始、破坏演化过程的力学响应特性,而在动态压缩实验中,即使试样中已出现双锥形的绝热剪切带及局部裂纹分布,其表观等效应力-应变曲线并不出现软化特征,动态压缩实验无法得到关于绝热剪切起始、发展以及破坏的本构软化响应特性.  相似文献   

12.
In this work, a new test set-up was applied in order to determine cohesive zone models experimentally. A high speed camera in combination with a digital image correlation system was used to record the local displacements enabling the detailed determination of crack opening values. The J-Integral method was used to calculate the cohesive stresses. The analyzed materials were composites made of glass fiber reinforced epoxy resin layers. Two different specimen geometries and the difference between warp and weft of the glass fiber mats were analyzed. As the specimen geometry didn’t have a significant influence, the difference between warp and weft, regarded by the loading direction, lead to considerably different cohesive zone laws. The initial part, the linear increase to a maximum stress, was very similar, while the damage evolution was either exponential or bilinear in shape. In future work, the derived cohesive zone models will be used to perform finite element simulations on laboratory specimens and on component scale. Thus, by comparison to the measurement result, the cohesive zone models can be evaluated.  相似文献   

13.
Due to its low density and high strength, HMPE (high modulus polyethylene) fibres are being increasingly used in synthetic ropes for offshore mooring. Nevertheless, the occurrence of creep at sea temperature can be a shortcoming for its practical use. Creep tests performed at different load levels in a sub-system of the HMPE rope (yarn) are frequently used as a first step to obtain some information about the susceptibility to creep deformation at a given temperature. The present paper is concerned with the phenomenological modelling of creep tests in HMPE yarns. In this macroscopic approach, besides the classical variables (stress, total strain), an additional scalar variable related with the damage induced by creep process is introduced. An evolution law is proposed for this damage variable. The predicted lifetimes and elongations of HMPE specimens in creep tests at different load levels and room temperature are compared with experimental results showing a good agreement.  相似文献   

14.
The paper deals with a consistent and systematic general framework for the development of anisotropic continuum damage in ductile metals based on thermodynamic laws and nonlocal theories. The proposed model relies on finite strain kinematics based on the consideration of damaged as well as fictitious undamaged configurations related via metric transformation tensors which allow for the interpretation of damage tensors. The formulation is accomplished by rate-independent plasticity using a nonlocal yield condition of Drucker–Prager type, anisotropic damage based on a nonlocal damage growth criterion as well as non-associated flow and damage rules. The nonlocal theory of inelastic continua is established to be able to take into account long-range microstructural interaction. The approach incorporates macroscopic interstate variables and their higher-order gradients which properly describe the change in the internal structure and investigate the size effect of statistical inhomogeneity of the heterogeneous material. The idea of bridging length-scales is made by using higher-order gradients in the evolution equations of the equivalent inelastic strain measures which leads to a system of elliptic partial differential equations which is solved using the finite difference method at each iteration of the loading step and the displacement-based finite element procedure is governed by the standard principle of virtual work. Numerical simulations of the elastic–plastic deformation behavior of damaged solids demonstrate the efficiency of the formulation. Tension tests undergoing large strains are used to investigate the damage growth in high strength steel. The influence of various model parameters on the prediction of the deformation and localization of ductile metals is discussed.  相似文献   

15.
韩文钦  骆英 《实验力学》2017,(2):189-196
为了深入探究复合材料层合板结构的损伤机理和损伤演化,应用声发射技术和图像相关技术同步实时监测含孔碳纤维复合材料层合板试样在静拉伸过程中的损伤演化。实验结果表明,试样表面应变场呈现局部化特征。对应变集中带在加载方向的应变值进行了统计分析,获得了应变场的特征统计量(标准差)随加载的演化模型。层合板损伤时产生声发射信号的峰值频率大小能够有效区分复合材料的损伤模式,由此,建立了基于损伤模式累积声发射数的损伤演化模型。通过对应变场演化模型和声发射损伤演化模型的分析,可以将复合材料的损伤演化分为损伤初始阶段、损伤平稳扩展期、损伤严重阶段三个部分。统计分析结果表明:在损伤严重阶段,基于声发射事件数的各种损伤的损伤变量和局部应变场标准差快速增长,因此局部应变场统计标准差可以作为后期局部损伤严重程度的识别指标。  相似文献   

16.
An Experimental Technique for Spalling of Concrete   总被引:1,自引:0,他引:1  
The spalling strength of concrete is measured by examining the strain wave profiles in a polymer buffer bar behind the slender concrete bar specimen placed between a large diameter (Φ100 mm) Hopkinson bar and the buffer bar. The experimental results indicate that the spalling strength is related to not only the compressive strength of concrete but also the impact velocities (the loading rates). The rate effect of spalling strength mainly results from the different cracking paths in concrete under different impact velocities. However when the input compressive stress to specimen exceeds the threshold required to trigger the compressive damage, the spalling strength decreases due to the evolution and cumulation of compressive damage in concretes. The repeated impact loading experiments indicate that damage plays an important role in the spallation process of concrete. The high speed video of the spalling fracture process shows that multiple spalling fractures may occur in the scab and damage accumulation resulting from stress wave propagation in scab is the main reason for the producing of multiple spallations.  相似文献   

17.
921A钢纯剪切帽状试件在SHPB实验中的动态变形   总被引:1,自引:0,他引:1  
应用ANSYS/LS-DYNA软件,开展了一系列基于921A钢纯剪切帽状试件的SHPB数值模拟.结合SHPB系统应力波理论,研究不同加载速率v0(或应力脉冲I(t))下,特别是高应变率(约106 s-1)下的压杆轴向应变波形以及相应的试件动态变形特性,并对高速撞击下压杆中应变波形的适用性作了相关讨论.  相似文献   

18.
Inhomogeneous plastic deformation of 1045 steel under monotonic loading was experimentally studied. Thin-walled tubular specimens were used in the experiments and custom-made small strain gages were bonded on the specimen surface to characterize the local deformation. Experiments were conducted under tension, torsion, and combined tension–torsion. During the propagation of Lüders bands, the local deformation experienced two-stage deformation: an abrupt plastic deformation stage followed by a slower deformation process. In some area of the gage section of the specimen, a small amount of initial plastic deformation occurred before the Lüders front reached. During the propagation of Lüders bands, multiple Lüders fronts can be formed. Under tension, torsion, and combined tension–torsion with a constant axial load, the Lüders front was approximately parallel to the material plane of maximum shear stress. When the combined axial-torsion followed a proportional fashion, the stress–extensometer strain responses were dependent on the axial/torsional loading ratio, and the Lüders fronts were oriented differently and propagated along the specimen axis at a different velocity. The local strain was inhomogeneous even at the work-hardening stage. The relationships between the equivalent stress and the equivalent plastic strain were found to be practically identical for all the loading cases studied.  相似文献   

19.
The purpose of this work is to simulate the evolution of ductile damage and failure involved by plastic strain reversals using damage models based on either continuum damage mechanics (CDM) or porosity evolution. A low alloy steel for pressure vessels (20MnMoNi55) was chosen as reference material. The work includes both experimental and simulation phases. The experimental campaign involves different kinds of specimens and testing conditions. First, monotonic tensile tests have been performed in order to evaluate tensile and ductile damage behaviour. Then, the cyclic yielding behaviour has been characterized performing cyclic plasticity tests on cylindrical bars. Finally, cyclic loading tests in the plastic regime have been made on different round notched bars (RNBs) to study the evolution of plastic deformation and damage under multiaxial stress conditions. The predictions of the different models were compared in terms of both, the specimens macroscopic response and local damage. Special emphasis was laid on predictions of the number of cycles prior to final failure and the crack initiation loci.  相似文献   

20.
A set of constitutive equations for large rate-dependent elastic-plastic-damage materials at elevated temperatures is presented to be able to analyze adiabatic high strain rate deformation processes for a wide range of stress triaxialities. The model is based on the concepts of continuum damage mechanics. Since the material macroscopic thermo-mechanical response under large strain and high strain rate deformation loading is governed by different physical mechanisms, a multi-dissipative approach is proposed. It incorporates thermo-mechanical coupling effects as well as internal dissipative mechanisms through rate-dependent constitutive relations with a set of internal variables. In addition, the effect of stress triaxiality on the onset and evolution of plastic flow, damage and failure is discussed.Furthermore, the algorithm for numerical integration of the coupled constitutive rate equations is presented. It relies on operator split methodology resulting in an inelastic predictor-elastic corrector technique. The explicit finite element program LS-DYNA augmented by an user-defined material subroutine is used to approximate boundary-value problems under dynamic loading conditions. Numerical simulations of dynamic experiments with different specimens are performed and good correlation of numerical results and published experimental data is achieved. Based on numerical studies modified specimens geometries are proposed to be able to detect complex damage and failure mechanisms in Hopkinson-Bar experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号