首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Wang W  Li C  Li Y  Hu Z  Chen X 《Journal of chromatography. A》2006,1102(1-2):273-279
This paper presents a micellar electrokinetic chromatography method with laser-induced fluorescence detection to analyze ephedrine (E) and pseudoephedrine (PE) after derivatizated with 5-(4,6-dichloro-s-triazin-2-ylamino) fluorescein. The optimum derivatization conditions were: 0.05 M Na2CO(3/NaHCO3 (pH 9.5), reaction time 30 min at 45 degrees C, molar ratio of DTAF to E and PE mixture 20:1. The baseline separation was achieved within 8 min with running buffer composed of 20 mM borate+20 mM SDS+15% acetonitrile (v/v) (adjusted pH 9.8), and applied voltage of 20 kV. Good linearity relationships (correlation coefficients: 0.9906 for E and 0.9941 for PE) between the peak heights and concentration of the analytes were obtained (2.5-50 ngmL(-1)). The detection limits for E and PE were 3.85 x 10(-4) and 1.41 x 10(-4)ngmL(-1), respectively, which indicated that the proposed method surpassed other chromatographic alternatives in terms of limit of detection by at least 10(3) folds. The method was applied to the analysis of the two alkaloids in ephedra herb plants and its preparations with recoveries in the range of 89.6-107.0%.  相似文献   

2.
A reverse-phase high-performance liquid chromatographic (HPLC) method to determine hydrocortisone acetate, hydrocortisone hemisuccinate and lidocaine is described in this paper. The separation was made in a LichrCART C(18) column using a methanol-NaH(2)PO(4)/Na(2)HPO(4) (0.1 mol L(-1)) (pH=4.5) buffer solution as a mobile phase in isocratic mode (60:40 (v/v)). The mobile phase flow rate and the sample volume injected were 1 mL min(-1) and 20 micro L, respectively. The detection was made with a diode-array detector measuring at the maximum for each compound. Quantification limits ranging from 0.18 to 0.84 micro g L(-1) were obtained when the peak area was measured. The method was applied in pharmaceutical formulations that were compared with those obtained by through multivariate regression spectrophotometry and micellar capillary electrophoresis (MEKC). HPLC results are in accordance with the results obtained by MEKC. The spectrophotometric method was suitable only for synthetic samples.  相似文献   

3.
A simple and sensitive HPLC method has been developed for the determination of danofloxacin (DAN) in plasma. Sample preparations were carried out by adding phosphate buffer (pH 7.4, 0.1 M), followed by extraction with trichloromethane. DAN and the internal standard, sarafloxacin (SAR), were separated on a reversed-phase column, and eluted with aqueous solution-acetonitrile (80:20 v/v). The fluorescence of the column effluent was monitored at lambda(ex) = 338 and lambda(em) = 425 nm. The retention times were 2.80 and 4. 40 min for DAN and SAR, respectively. The method was shown to be linear from 1 to 1500 ng/mL (r(2) = 0.999). The detection and quantitation limit were 1 and 5 ng/mL, respectively. Mean recovery was determined as 80% by the analysis of plasma standards containing 150, 750 and 1500 ng/mL. Inter- and intra-assay precisions were 4.0% and 2.4%, respectively.  相似文献   

4.
An HPLC method is described for determination of ferulic acid in rat plasma. The concentration of ferulic acid in rat plasma was determined after deproteinization with acetonitrile using sulfamethoxazole as internal standard. Chromatographic separations were performed on a C(18) stationary phase with a mobile phase composed of acetonitrile-water (16:84, v/v) with 1% glacial acetic acid. The UV detection wavelength was set at 320 nm. The method was successfully applied to the determination of pharmacokinetic parameters in rat plasma after oral administration of Rhizoma Chuanxiong and and its compound preparation Suanzaoren decoctions. The calibration curve was linear over the range 0.0510-4.08 micro g/mL in rat plasma. Within-day and between-day precisions were less than 4.5% RSD. Mean recovery was determined as 96.9%. The limit of quantitation was 0.0510 micro g/mL. The pharmacokinetic parameters of the two preparations were different significantly (p < 0.05), which may attribute to the effects of other ingredients present in Suanzaoren decoction.  相似文献   

5.
An HPLC method for the quantification of sterols in edible seaweeds   总被引:1,自引:0,他引:1  
This study presents an HPLC method for the quantification of sterols in edible seaweeds. Sterols were identified by HPLC/mass spectrometry (HPLC-MS) in positive APCI mode. The samples were saponified by refluxing with 1 m ethanolic KOH, and the non-saponifiable fraction was extracted with hexane. Sterols were quantified by HPLC with UV detection (HPLC-UV), on a 15 x 0.4 cm Kromasil 100 C(18) 5 micro m column (mobile phase 30:70 v/v methanol:acetonitrile; fl ow rate 1.2 mL/min; column temperature 30 degrees C; detection wavelength 205 nm). Method repeatability for fucosterol was good (coefficient of variation 2.4%). Sterol contents were determined in canned or dried brown seaweeds (Himanthalia elongata, Undaria pinnatifida, Laminaria ochroleuca) and red seaweeds (Palmaria sp., Porphyra sp.). The predominant sterol was fucosterol in brown seaweeds (83-97% of total sterol content; 662-2320 micro g/g dry weight), and desmosterol in red seaweeds (87-93% of total sterol content; 187-337 micro g/g dry weight).  相似文献   

6.
A high-performance liquid chromatography (HPLC) method with mass spectrometric detection is described for determination of arecoline in newborn meconium, urine and cord serum, using pilocarpine as internal standard. The analytes were extracted from neonatal biological matrices with chloroform/isopropanol (95:5, v/v) at alkaline pH. Extracts were analyzed by HPLC coupled to an electrospray (ESI) interface and a quadrupole mass spectrometer. Chromatography was performed on a C(8) reversed-phase column using 10 mM ammonium acetate (pH 4.3)/acetonitrile (90:10, v/v) as mobile phase. The mass spectrometer was operated in selected ion monitoring mode. The method was validated over the concentration range 0.005-1.00 micro g/g meconium, 0.004-1.00 micro g/mL cord serum and 0.001-1.00 micro /mL urine. Mean recoveries ranged between 86.5 and 90.7% for arecoline in the different biological matrices, with precision always better than 10%. The quantification limits of arecoline were 0.005 micro g/g meconium, 0.004 micro g/mL cord serum, and 0.001 micro g/mL urine. The method was applied to the analysis of neonatal biological matrices to assess eventual fetal exposition to arecoline. Two newborns from Asian mothers who declared areca nut consumption presented arecoline in meconium with concentrations in the range 0.006-0.008 micro g/g; also the urine from one neonate tested positive for the drug.  相似文献   

7.
A highly sensitive, selective and simple method is described for the determination of histamine by high-performance liquid chromatography (HPLC) with fluorescence detection. The method is based on an intramolecular excimer-forming fluorescence derivatization of histamine with 4-(1-pyrene)butyric acid N-hydroxysuccinimide ester (PSE), followed by reversed-phase HPLC. Histamine, having two amino moieties in a molecule, was converted to the dipyrene-labeled derivative by reaction with PSE. The derivative afforded intramolecular excimer fluorescence (450-540 nm), which can clearly be discriminated from the monomer fluorescence (370-420 nm) emitted from PSE. Typically, a 10 micro L sample solution was mixed with 100 micro L of derivatization reagent solution, which was a mixture of 0.5 mm PSE in acetonitrile and 0.5 mm potassium carbonate in water (8:2, v/v). The derivatization was carried out at 100 degrees C for 90 min. The PSE derivative of histamine could be separated by reversed-phase ODS column with isocratic elution using acetonitrile:water (82:18, v/v) containing 0.03% triethylamine. The detection limit (singnal-to-noise ratio = 3) of histamine was 0.5 fmol for a 30 micro L injection. The method was successfully applied to the determination of histamine in human urine, and had enough selectivity and sensitivity for urinary histamine quantification.  相似文献   

8.
A new HPLC method was developed and validated for the determination of asymmetric and symmetric dimethylarginines and l ‐arginine in human plasma. After SPE and evaporation of the eluate, the samples were derivatised with an o‐phthaldialdehyde reagent containing 3‐mercaptopropionic acid. The derivatives formed were analysed by isocratic RP‐HPLC with electrochemical detection at +320 mV. The mobile phase consisted of 50 mM phosphate buffer (pH 6.1) containing 10% v/v acetonitrile, the flow rate was 1 mL/min. The retention times of all compounds including monomethylarginine (internal standard) were <24 min. The LODs (S/N 3:1) were 0.012 μM for both dimethylarginines and 0.013 μM for l ‐arginine; the linearity of the method was from 0.1 to 20 μM for both dimethylarginines and from 1 to 200 μM for l ‐arginine. Absolute extraction recoveries measured for all analytes ranged from 85 to 88%.  相似文献   

9.
A method for the determination of acetone in plasma or urine by high-performance liquid chromatography (HPLC) was developed. Plasma specimens are deproteinized with acetonitrile (1:1, v/v) 2,4-dinitrophenylhydrazine (DNPH) is added to the supernatant or to filtered urine samples, similarly treated with acetonitrile (2:1, v/v) to prevent crystallization of the synthesized phenylhydrazone. An aliquot (20 microliters) of the reaction mixture was subjected to HPLC at ambient temperature using a reversed-phase Pecosphere 3 x 3 C18 column with acetonitrile-water (45:55, v/v) as eluent at a flow-rate of 1 ml/min and detection at 365 nm. Hydroxyacetone and acetoacetate phenylhydrazone derivatives do not interfere. The identification of acetone by its retention time was confirmed by comparison with a laboratory-synthesized acetone DNPH derivative. The concentration of acetone, eluted within 3 min, was determined by the peak-height method. The detection limit was 0.034 mmol/l; the relative standard deviations were less than 5% within run (n = 20) and less than 10% between run (n = 20).  相似文献   

10.
A sensitive HPLC method with pre-column fluorescence derivatization using 4-Fluoro-7-Nitrobenzofurazan (NBD-F) has been developed for the determination of gabapentin in pharmaceutical preparations. The method is based on the derivatization of gabapentin with (NBD-F) in borate buffer of pH 9.5 to yield a yellow, fluorescent product. The HPLC separation was achieved on a Inertsil C(18) column (250 mm × 4.6 mm) using a mobile phase of methanol water (80:20, v/v) solvent system at 1.2 mL/min flow rate. Mexiletine was used as the internal standard. The fluorometric detector was operated at 458 nm (excitation) and 521 nm (emission). The assay was linear over the concentration range of 5 50 ng/mL. The method was validated for specificity, linearity, limit of detection, limit of quantification, precision, accuracy, robustness. Moreover, the method was found to be sensitive with a low limit of detection (0.85 ng/mL) and limit of quantitation (2.55 ng/mL). The results of the developed procedure for gabapentin content in capsules were compared with those by the official method (USP 32). Statistical analysis by t- and F-tests, showed no significant difference at 95 confidence level between the two proposed methods.  相似文献   

11.
An improved HPLC procedure for the separation of phospholipids is described. The method described utilizes a solvent mixture of acetonitrile-methanol–water-trifluoroacetic acid (100:25:1.7:2.5, v/v) as the mobile phase, which is more compatible with the pump than mobile phases containing inorganic acids. Separation was by isocratic elution on a Hypersil silica column coupled to an evaporative light scattering detector. Complete separation of phosphatidylserine (PS), phosphatidylethanolamine (PE), phosphatidylcholine (PC) and sphingomyelin (SM) was achieved in less than 20 min. The detection limits for PS, PE, PC and SM were 50, 50, 80 and 150 ng (S/N = 3), respectively. Human, bovine and porcine erythrocyte ghost membranes and animal tissues have been successfully analyzed for their phospholipid contents.  相似文献   

12.
A rapid and sensitive high-performance liquid chromatographic (HPLC) method is developed for the determination of tetramethylpyrazine phosphate, an antiplatelet aggregation agent, in 100 microL of dog plasma. Sample preparations are carried out by deproteinization with an internal standard (carbamazepine) solution in acetonitrile. An aliquot of the supernatant (20 microL) is directly injected into an HPLC apparatus with methanol-phosphate buffer (0.01M, pH 3.0) (62:38, v/v) as the mobile phase at a flow rate of 1.0 mL/min. Separation is performed with a C18 column at 30 degrees C. The peak is detected using a UV detector set at 279 nm. The capacity factors are 1.48 for tetramethylpyrazine phosphate and 2.09 for carbamazepine, with a total run time of 10 min. The calibration curve is linear in the 0.2-50-microg/mL range. The limit of detection is 0.05 microg/mL. Mean recoveries are 92.6-98.1%. The within- and between-day variation coefficients are less than 4.9% and 7.5%, respectively. The present method has been successfully used to provide pharmacokinetic data after oral administration of tetramethylpyrazine phosphate pulsincap capsules and immediate-release tablets to dogs.  相似文献   

13.
The isoxazol derivative leflunomide [N-(4'-trifluoromethylphenyl)-5-methylisoxazole-4-carboxamide] is an inhibitor of de novo pyrimidine synthesis used for the treatment of rheumatoid artrithis. In the present study, a liquid-liquid extraction-based reversed-phase HPLC method with UV detection was validated and applied for the analysis of leflunomide and its active metabolite, A77 1726, in human plasma. The analytes were separated using a mobile phase, consisting of acetonitrile, water and formic acid (40/59.8/0.2, v/v), at a flow rate of 0.5 mL/min, and UV detection at 261 nm. The retention times for A77 1726, leflunomide and warfarin (internal standard) were 8.2, 16.2 and 12.2 min, respectively. The validated quantification range of the method was 0.05-100 micro g/mL for leflunomide and 0.1-100 micro g/mL for A77 1726. The developed procedure was applied to assess steady-state plasma concentrations of A77 1726 in patients with rheumatoid arthritis treated with 10 or 20 mg leflunomide per day.  相似文献   

14.
A simple, accurate, precise and sensitive HPLC-UV method was developed for the determination of secnidazole in human plasma. Secnidazole and tinidazole (IS) were extracted from 0.2 mL of human plasma by ethyl acetate. Secnidazole was then separated by HPLC on a Diamond C(18) column and quantified by ultraviolet detection at 319 nm. The mobile phase consisted of acetonitrile-aqueous 5 mm sodium acetate (30:70, v/v) containing of 0.1% acetic acid adjusted to pH 4.0, and the flow rate was 1.0 mL/min. The low limit of quantification was 0.1 microg/mL. The method was linear over the concentration range 0.1-25.0 microg/mL (R(2) = 1.000). The recovery of secnidazole from human plasma ranged from 76.5 to 89.1%. Inter- and intra-assay precision ranged from 3.3 to 10.7%. Secnidazole in plasma was stable when stored at ambient temperature for 8 h, at -20 degrees C for 2 weeks and at -20 degrees C for three freeze-thaw cycles. The developed method was successfully applied to the pharmacokinetic and bioequivalence studies between test and reference secnidazole tablets following a single 500 mg oral dosage to 20 healthy volunteers of both genders. Pharmacokinetics parameters T(max), C(max), AUC(0-)t, AUC(0-infinity), T(1/2) were determined of both preparations. The analysis of variance (ANOVA) did not show any significant difference between the two preparations and 90% confidence intervals fell within the acceptable range for bioequivalence. It was concluded that the two secnidazole preparations are bioequivalence and may be used interchangeably.  相似文献   

15.
Zhang J  Xie J  Liu J  Tian J  Chen X  Hu Z 《Electrophoresis》2004,25(1):74-79
A selective and sensitive microemulsion electrokinetic chromatography with laser-induced fluorescence detection method was developed for the quantification of ephedrine (E) and pseudoephedrine (PE) derivatized with 4-chloro-7-nitrobenzo-2-oxa-1, 3-diazol. By a series of optimization, a running buffer composed of 20 mM borate + microemulsion (23.3 mM Sodium dodecyl sulfate/180.85 mM 1-butanol/16.4 mM n-heptane) +8% acetonitrile was applied for the separation of the derivatives. A linear relationship for E and PE was obtained in the range of 0.058-11.58 microg.mL(-1) (correlation coefficient: 0.9993 for E, 0.9995 for PE), and the detection limits for E and PE were 5.3 and 3.9 ng.mL(-1). The method was applied to the analysis of the two alkaloids in Chinese traditional herbal preparations with recoveries in the range of 96.9-105.4%.  相似文献   

16.
Two sensitive and reproducible methods were developed and validated for the determination of ziprasidone (ZIP) in the presence of its degradation products in pure form and in pharmaceutical formulations. The fi rst method was based on reversed-phase high-performance liquid chromatography (HPLC), on a Lichrosorb RP C(18) column using water:acetonitrile:phosphoric acid (76:24:0.5 v/v/v) as the mobile phase at a fl ow rate of 1.5 mL min(-1) at ambient temperature. Quantification was achieved with UV detection at 229 nm over a concentration range of 10-500 micro g mL(-1) with mean percentage recovery of 99.71 +/- 0.55. The method retained its accuracy in presence of up to 90% of ZIP degradation products. The second method was based on TLC separation of ZIP from its degradation products followed by densitometric measurement of the intact drug spot at 247 nm. The separation was carried out on aluminium sheet of silica gel 60 F(254) using choloroform:methanol:glacial acetic acid (75:5:4.5 v/v/v) as the mobile phase, over a concentration range of 1-10 micro g per spot and mean percentage recovery of 99.26 +/- 0.39. Both methods were applied successfully to laboratory prepared mixtures and pharmaceutical capsules.  相似文献   

17.
A simple, rapid, and reliable method for the determination of residual sulphonamide antibacterials (SAs) (sulfadiazine, sulfamerazine, sulfadimidine, sulfamethoxypiridazine, sulfisozole, sulfamonomethoxine, sulfamethoxazole, sulfisoxazole, sulfadimethoxine, and sulfaquinoxaline) in animal liver and kidney was developed using a combination of clean-up on a Bond Elut PSA cartridge and HPLC with UV detection. The SAs were extracted with ethyl acetate and then dissolved in 5 ml of 50 v/v% ethyl acetate-n-hexane after being evaporated to dryness. For clean-up of the crude sample, the resuspended extract was applied to a Bond Elut PAS (primary/secondary amine cartridge), and then SAs were eluted from the cartridge using 5 ml of 20 v/v% acetonitrile-0.05 M ammonium formate before being analysed by HPLC. Recoveries of the SAs at the levels of 0.5 and 0.1 microg/g were 70.8-98.2%, the rerative standard deviation were less than 7.0%, and the detection limits were 0.03 microg/g. The present analysis method of SAs in animal kidney and liver using HPLC with a clean-up procedure was demonstrated to be highly applicable to the direct LC-MS-MS analysis without any modification.  相似文献   

18.
Three stability-indicating assay methods were developed for the determination of tropisetron in a pharmaceutical dosage form in the presence of its degradation products. The proposed techniques are HPLC, TLC, and first-derivative spectrophotometry (1D). Acid degradation was carried out, and the degradation products were separated by TLC and identified by IR, NMR, and MS techniques. The HPLC method was based on determination of tropisetron in the presence of its acid-induced degradation product on an RP Nucleosil C18 column using methanol-water-acetonitrile-trimethylamine (65 + 20 + 15 + 0.2, v/v/v/v) mobile phase and UV detection at 285 nm. The TLC method was based on the separation of tropisetron and its acid-induced degradation products, followed by densitometric measurement of the intact spot at 285 nm. The separation was carried out on silica gel 60 F254 aluminum sheets using methanol-glacial acetic acid (22 + 3, v/v) mobile phase. The 1D method was based on the measurement of first-derivative amplitudes of tropisetron in H2O at the zero-crossing point of its acid-induced degradation product at 271.9 nm. Linearity, accuracy, and precision were found to be acceptable over concentration ranges of 40-240 microg/mL, 1-10 microg/spot, and 6-36 micro/mL for the HPLC, TLC, and 1D methods, respectively. The suggested methods were successfully applied for the determination of the drug in bulk powder, laboratory-prepared mixtures, and a commercial sample.  相似文献   

19.
满正印  王全林  李和生  张爱芝  沈坚 《色谱》2015,33(3):267-274
建立了超高效液相色谱-三重四极杆质谱(UPLC-MS/MS)同时测定食品级聚苯乙烯(PS)和聚乙烯(PE)色母粒中33种初级芳香胺(PAAs)的检测方法。PS色母粒用二氯甲烷溶解,超声提取后加入甲醇沉淀,并将提取液过石墨化碳固相萃取柱净化;PE色母粒用二氯甲烷超声溶胀提取;将PS色母粒过柱液和PE色母粒提取液浓缩,浓缩液用甲醇-水(1:9, v/v)定容至2 mL, 0.22 μm膜过滤后上机检测。采用BEH Phenyl色谱柱(100 mm×2.1 mm, 1.7 μm),以0.07%(v/v)甲酸甲醇溶液-水(1:9, v/v)为流动相,梯度洗脱分离,UPLC-MS/MS多反应监测(MRM)模式检测,同位素内标法定量。优化了色谱分离条件、质谱碎裂电压、碰撞能量等,并考察了提取时间、提取溶剂、浓缩方式等对回收率的影响。33种PAAs的方法检出限为6~10 μg/kg,定量限为20~30 μg/kg, 2种不同基质样品在20、100、200 μg/kg等3个添加水平的平均回收率为61.3%~119.8%,相对标准偏差(RSD)为1.4%~14.8%。本方法操作简便、快速、准确、灵敏度高,能满足相关测定要求。  相似文献   

20.
1-Anthroylnitrile (1-AN) has been shown to be an efficient labelling reagent for the determination of T-2 toxin (T-2) by high-performance liquid chromatography (HPLC)-fluorescence detection. This reaction has been used to develop a sensitive, reproducible and accurate method for the determination of T-2 in wheat, corn, barley, oats, rice and sorghum. The method uses immunoaffinity columns containing antibodies specific for T-2 for extract clean-up, pre-column derivatization with 1-AN and HPLC with fluorescence detection for toxin determination. Ground cereal samples were extracted with methanol-water (80:20, v/v), the extracts were purified by immunoaffinity columns and the toxin was quantified by reversed-phase HPLC with fluorometric detection (excitation wavelength 381 nm, emission wavelength 470 nm) after derivatization with 1-AN. Recoveries from the different cereals spiked with T-2 at levels ranging from 0.05 to 1.5 microg/g were from 80 to 99%, with relative standard deviations of less than 6%. The limit of detection was 0.005 microg/g, based on a signal-to-noise ratio of 3:1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号