首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The energetic and volumetric properties of a three‐state protein folding system, comprising a metastable triple mutant of the Fyn SH3 domain, have been investigated using pressure‐dependent 15N‐relaxation dispersion NMR from 1 to 2500 bar. Changes in partial molar volumes (ΔV) and isothermal compressibilities (ΔκT) between all the states along the folding pathway have been determined to reasonable accuracy. The partial volume and isothermal compressibility of the folded state are 100 mL mol?1 and 40 μL mol?1 bar?1, respectively, higher than those of the unfolded ensemble. Of particular interest are the findings related to the energetic and volumetric properties of the on‐pathway folding intermediate. While the latter is energetically close to the unfolded state, its volumetric properties are similar to those of the folded protein. The compressibility of the intermediate is larger than that of the folded state reflecting the less rigid nature of the former relative to the latter.  相似文献   

2.
The C40A/C82A double mutant of barstar has been shown to undergo cold denaturation above the water freezing point. By rapidly applying radio-frequency power to lossy aqueous samples, refolding of barstar from its cold-denatured state can be followed by real-time NMR spectroscopy. Since temperature-induced unfolding and refolding is reversible for this double mutant, multiple cycling can be utilized to obtain 2D real-time NMR data. Barstar contains two proline residues that adopt a mix of cis and trans conformations in the low-temperature-unfolded state, which can potentially induce multiple folding pathways. The high time resolution real-time 2D-NMR measurements reported here show evidence for multiple folding pathways related to proline isomerization, and stable intermediates are populated. By application of advanced heating cycles and state-correlated spectroscopy, an alternative folding pathway circumventing the rate-limiting cis-trans isomerization could be observed. The kinetic data revealed intermediates on both, the slow and the fast folding pathway.  相似文献   

3.
4.
5.
The 20 residue long Trp‐cage is the smallest protein known, and thus has been the subject of several in vitro and in silico folding studies. Here, we report the multistate folding scenario of the miniprotein in atomic detail. We detected and characterized different intermediate states by temperature dependent NMR measurements of the 15N and 13C/15N labeled protein, both at neutral and acidic pH values. We developed a deconvolution technique to characterize the invisible—fully folded, unfolded and intermediate—fast exchanging states. Using nonlinear fitting methods we can obtain both the thermodynamic parameters (ΔHF–I, TmF–I, ΔCpF–I and ΔHI–U, TmI–U, ΔCpI–U) and the NMR chemical shifts of the conformers of the multistate unfolding process. During the unfolding of Trp‐cage distinct intermediates evolve: a fast‐exchanging intermediate is present under neutral conditions, whereas a slow‐exchanging intermediate‐pair emerges at acidic pH. The fast‐exchanging intermediate has a native‐like structure with a short α‐helix in the G11–G15 segment, whereas the slow‐exchanging intermediate‐pair presents elevated dynamics, with no detectable native‐like residue contacts in which the G11? P12 peptide bond has either cis or trans conformation. Heteronuclear relaxation studies combined with MD simulations revealed the source of backbone mobility and the nature of structural rearrangements during these transitions. The ability to detect structural and dynamic information about folding intermediates in vitro provides an excellent opportunity to gain new insights into the energetic aspects of the energy landscape of protein folding. Our new experimental data offer exceptional testing ground for further computational simulations.  相似文献   

6.
热塑性酚醛树脂的13C NMR表征   总被引:1,自引:0,他引:1  
采用一种新型环保工艺合成了热塑性酚醛(phenol novolac,PN)树脂,并采用13C NMR方法对其分子结构进行了分析,由谱图中各峰积分值定量计算出了o-o、o-p、p-p结构、支化结构、游离苯酚和醚键等其它结构所占比例分别约为19.42%、46.21%、22.32%、3.13%、4.24%和4.69%。与常规工艺生产的PN相比并无大的变化,但新型工艺从根本上解决了常规工艺带来的高浓度含苯酚废水污染的问题。研究发现催化剂浓度的提高可以减少支化结构的产生,反应温度的提高有利于o-o结构的生成,随着反应时间的延长,o-o、o-p、p-p3种结构增多。  相似文献   

7.
Structural biology has made important contributions to the understanding of biological processes. In recent years an increasing amount of structural information has also been derived from NMR spectroscopic studies, often with special emphasis on dynamic aspects. The introduction of three- and four-dimensional techniques has greatly simplified protein structure determination by NMR Spectroscopy, which has in fact become routine. In the past it was more of an art to interpret the complicated NOESY spectra of proteins, but the application of three-dimensional techniques now makes the interpretation of protein spectra straightforward. In this review we discuss the most important multidimensional NMR techniques along with suitable applications. The emphasis is put less on the discussion of individual pulse sequences than on their application to the structure determination of proteins.  相似文献   

8.
NMR spectroscopy is a particularly informative method for studying protein structures and dynamics in solution; however, it is also one of the most time-consuming. Modern approaches to biomolecular NMR spectroscopy are based on lengthy multidimensional experiments, the duration of which grows exponentially with the number of dimensions. The experimental time may even be several days in the case of 3D and 4D spectra. Moreover, the experiment often has to be repeated under several different conditions, for example, to measure the temperature-dependent effects in a spectrum (temperature coefficients (TCs)). Herein, a new approach that involves joint sampling of indirect evolution times and temperature is proposed. This allows TCs to be measured through 3D spectra in even less time than that needed to acquire a single spectrum by using the conventional approach. Two signal processing methods that are complementary, in terms of sensitivity and resolution, 1) dividing data into overlapping subsets followed by compressed sensing reconstruction, and 2) treating the complete data set with a variant of the Radon transform, are proposed. The temperature-swept 3D HNCO spectra of two intrinsically disordered proteins, osteopontin and CD44 cytoplasmic tail, show that this new approach makes it possible to determine TCs and their non-linearities effectively. Non-linearities, which indicate the presence of a compact state, are particularly interesting. The complete package of data acquisition and processing software for this new approach are provided.  相似文献   

9.
A variety of IR‐active moieties with absorptions that are distinct from those of proteins have been developed as probes of local protein environments, including carbon‐deuterium bonds (C?D), cyano groups (CN), and azides (N3); however, no systematic analysis of their utility in a protein has been published. Previously, we characterized the N‐terminal Src homology 3 domain of the murine adapter protein Crk‐II (nSH3) with C?D bonds site‐selectively incorporated throughout, and showed that it is relatively rigid and electrostatically heterogeneous and that it thermally unfolds under equilibrium conditions via a simple two‐state mechanism. We now report the synthesis and characterization of eight variants of nSH3 with CN and/or N3 probes at five of the same positions. In agreement with previous studies, the position‐dependent spectra suggest that both probes are predominantly sensitive to hydration, and not to their local electrostatic environments. Importantly, both probes also tend to significantly perturb the protein if they are not incorporated at surface‐exposed positions. Thus, unlike C?D labels, which are both sensitive to their environment and non‐perturbative, CN and N3 probes should be used with caution.  相似文献   

10.
根据氨基酸的序列预测蛋白质的空间结构在基因治疗药物分子设计等方面有巨大的潜在应用价值.本研究基于HP格子模型利用改进的遗传算法预测了蛋白质的三维空间结构.改进的遗传算法引入了克隆体数量限制策略、巢穴竞争选择策略及局部优化策略等.实验结果表明,改进的遗传算法显著地提高了蛋白质结构的预测效率,模拟的蛋白质结构紧凑,更接近真实蛋白质的构型.  相似文献   

11.
The funneled energy landscape theory implies that protein structures are minimally frustrated. Yet, because of the divergent demands between folding and function, regions of frustrated patterns are present at the active site of proteins. To understand the effects of such local frustration in dictating the energy landscape of proteins, here we compare the folding mechanisms of the two alternative spliced forms of a PDZ domain (PDZ2 and PDZ2as) that share a nearly identical sequence and structure, while displaying different frustration patterns. The analysis, based on the kinetic characterization of a large number of site‐directed mutants, reveals that although the late stages for folding are very robust and biased by native topology, the early stages are more malleable and dominated by local frustration. The results are briefly discussed in the context of the energy‐landscape theory.  相似文献   

12.
13.
Intrinsically disordered proteins (IDPs) are involved in diverse cellular functions. Many IDPs can interact with multiple binding partners, resulting in their folding into alternative ligand‐specific functional structures. For such multi‐structural IDPs, a key question is whether these multiple structures are fully encoded in the protein sequence, as is the case in many globular proteins. To answer this question, here we employed a combination of single‐molecule and ensemble techniques to compare ligand‐induced and osmolyte‐forced folding of α‐synuclein. Our results reveal context‐dependent modulation of the protein′s folding landscape, suggesting that the codes for the protein′s native folds are partially encoded in its primary sequence, and are completed only upon interaction with binding partners. Our findings suggest a critical role for cellular interactions in expanding the repertoire of folds and functions available to disordered proteins.  相似文献   

14.
Protein folding involves a large number of steps and conformations in which the folding protein samples different thermodynamic states characterized by local minima. Kinetically trapped on‐ or off‐pathway intermediates are metastable folding intermediates towards the lowest absolute energy minima, which have been postulated to be the natively folded state where intramolecular interactions dominate, and the amyloid state where intermolecular interactions dominate. However, this view largely neglects the rich polymorphism found within amyloid species. We review the protein folding energy landscape in view of recent findings identifying specific transition routes among different amyloid polymorphs. Observed transitions such as twisted ribbon→crystal or helical ribbon→nanotube, and forbidden transitions such helical ribbon?crystal, are discussed and positioned within the protein folding and aggregation energy landscape. Finally, amyloid crystals are identified as the ground state of the protein folding and aggregation energy landscape.  相似文献   

15.
Despite the recent advances in the prediction of protein structures by deep neutral networks, the elucidation of protein-folding mechanisms remains challenging. A promising theory for describing protein folding is a coarse-grained statistical mechanical model called the Wako-Saitô-Muñoz-Eaton (WSME) model. The model can calculate the free-energy landscapes of proteins based on a three-dimensional structure with low computational complexity, thereby providing a comprehensive understanding of the folding pathways and the structure and stability of the intermediates and transition states involved in the folding reaction. In this review, we summarize previous and recent studies on protein folding and dynamics performed using the WSME model and discuss future challenges and prospects. The WSME model successfully predicted the folding mechanisms of small single-domain proteins and the effects of amino-acid substitutions on protein stability and folding in a manner that was consistent with experimental results. Furthermore, extended versions of the WSME model were applied to predict the folding mechanisms of multi-domain proteins and the conformational changes associated with protein function. Thus, the WSME model may contribute significantly to solving the protein-folding problem and is expected to be useful for predicting protein folding, stability, and dynamics in basic research and in industrial and medical applications.  相似文献   

16.
A protein can exist in multiple states under native conditions and those states with low populations are often critical to biological function and self‐assembly. To investigate the role of the minor states of an acyl carrier protein, NMR techniques were applied to determine the number of minor states and characterize their structures and kinetics. The acyl carrier protein from Micromonospora echinospora was found to exist in one major folded state (95.2 %), one unfolded state (4.1 %), and one intermediate state (0.7 %) under native conditions. The three states are in dynamic equilibrium and the intermediate state very likely adopts a native‐like structure and is an off‐pathway folding product. The intermediate state may mediate the formation of oligomers in vitro and play an important role in the recognition of partner enzymes in vivo.  相似文献   

17.
18.
Oxidative protein folding is a biological process to obtain a native conformation of a protein through disulfide-bond formation between cysteine residues. In a cell, disulfide-catalysts such as protein disulfide isomerase promote the oxidative protein folding. Inspired by the active sites of the disulfide-catalysts, synthetic redox-active thiol compounds have been developed, which have shown significant promotion of the folding processes. In our previous study, coupling effects of a thiol group and guanidyl unit on the folding promotion were reported. Herein, we investigated the influences of a spacer between the thiol group and guanidyl unit. A conjugate between thiol and guanidyl units with a diethylene glycol spacer (GdnDEG-SH) showed lower folding promotion effect compared to the thiol–guanidyl conjugate without the spacer (GdnSH). Lower acidity and a more reductive property of the thiol group of GdnDEG-SH compared to those of GdnSH likely resulted in the reduced efficiency of the folding promotion. Thus, the spacer between the thiol and guanidyl groups is critical for the promotion of oxidative protein folding.  相似文献   

19.
NMR spectroscopy is a pivotal technique to measure hydrogen exchange rates in proteins. However, currently available NMR methods to measure backbone exchange are limited to rates of up to a few per second. To raise this limit, we have developed an approach that is capable of measuring proton exchange rates up to approximately 104 s−1. Our method relies on the detection of signal loss due to the decorrelation of antiphase operators 2NxHz by exchange events that occur during a series of pi pulses on the 15N channel. In practice, signal attenuation was monitored in a series of 2D H(CACO)N spectra, recorded with varying pi-pulse spacing, and the exchange rate was obtained by numerical fitting to the evolution of the density matrix. The method was applied to the small calcium-binding protein Calbindin D9k, where exchange rates up to 600 s−1 were measured for amides, where no signal was detectable in 15N−1H HSQC spectra. A temperature variation study allowed us to determine apparent activation energies in the range 47–69 kJ mol−1 for these fast exchanging amide protons, consistent with hydroxide-catalyzed exchange.  相似文献   

20.
In this study, we present an NMR structure of the metallothionein (MT) from the snail Littorina littorea (LlMT) in complex with Cd2+. LlMT is capable of binding 9 Zn2+ or 9 Cd2+ ions. Sequence alignments with other snail MTs revealed that the protein is likely composed of three domains. The study revealed that the protein is divided into three individual domains, each of which folds into a single well‐defined three‐metal cluster. The central α2 and C‐terminal β domains are positioned with a unique relative orientation. Two variants with longer and shorter linkers were investigated, which revealed that specific interdomain contacts only occurred with the wild‐type linker. Moreover, a domain‐swap mutant in which the highly similar α1 and α2 domains were exchanged was structurally almost identical. It is suggested that the expression of a three‐domain MT confers an evolutionary advantage on Littorina littorea in terms of coping with Cd2+ stress and adverse environmental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号