首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A fully automatic radioxenon sampler/analyzer (ARSA) has been developed and demonstrated for the collection and quantitative measurement of the four xenon radionuclides,131mXe(11.9 d),133mXe(2.2 d),133Xe(5.2 d), and135Xe(9.1 hr), in the atmosphere. These radionuclides are important signatures in monitoring for compliance to a Comprehensive Test Ban Treaty (CTBT). Activity ratios of these radionuclides permit source attribution. Xenon, continuously and automatically separated from the atmosphere, is automatically analyzed by electron-photon coincidence spectrometry providing a lower limit of detection of about 100 μBq/m3. The demonstrated detection limit is about 100 times better than achievable with reported laboratory-based procedures for the short-time collection intervals of interest.  相似文献   

2.
The verification regime of the comprehensive test ban treaty (CTBT) is based on a network of three different waveform technologies together with global monitoring of aerosols and noble gas in order to detect, locate and identify a nuclear weapon explosion down to 1 kt TNT equivalent. In case of a low intensity underground or underwater nuclear explosion, it appears that only radioactive gases, especially the noble gas which are difficult to contain, will allow identification of weak yield nuclear tests. Four radioactive xenon isotopes, 131mXe, 133mXe, 133Xe and 135Xe, are sufficiently produced in fission reactions and exhibit suitable half-lives and radiation emissions to be detected in atmosphere at low level far away from the release site. Four different monitoring CTBT systems, ARIX, ARSA, SAUNA, and SPALAX? have been developed in order to sample and to measure them with high sensitivity. The latest developed by the French Atomic Energy Commission (CEA) is likely to be drastically improved in detection sensitivity (especially for the metastable isotopes) through a higher sampling rate, when equipped with a new conversion electron (CE)/X-ray coincidence spectrometer. This new spectrometer is based on two combined detectors, both exhibiting very low radioactive background: a well-type NaI(Tl) detector for photon detection surrounding a gas cell equipped with two large passivated implanted planar silicon chips for electron detection. It is characterized by a low electron energy threshold and a much better energy resolution for the CE than those usually measured with the existing CTBT equipments. Furthermore, the compact geometry of the spectrometer provides high efficiency for X-ray and for CE associated to the decay modes of the four relevant radioxenons. The paper focus on the design of this new spectrometer and presents spectroscopic performances of a prototype based on recent results achieved from both radioactive xenon standards and air sample measurements. Major improvements in detection sensitivity have been reached and quantified, especially for metastable radioactive isotopes 131mXe and 133mXe with a gain in minimum detectable activity (about 2 × 10?3 Bq) relative to current CTBT SPALAX? system (air sampling frequency normalized to 8 h) of about 70 and 30 respectively.  相似文献   

3.
4.
As part of the Comprehensive Nuclear Test-Ban Treaty (CTBT), the International Monitoring System (IMS) was established to monitor the world for nuclear weapon explosions. As part of this network, systems are in place to monitor the atmosphere for radioxenon. The IMS routinely detects radioxenon from sources other than nuclear explosions. One of these radioxenon sources is radiopharmaceutical production facilities. This is a sensitivity study on the nuclear forensic signals possible from such facilities. A fission process model was produced to calculate the activity of 131mXe, 133mXe, 133Xe and 135Xe in the process utilized to produce 99Mo and 131I for medical applications through high enriched uranium fission. The computer model accounts for fractionation of radionuclides within a decay chain that may result from filtering or chemical procedures. Ratios of the radioxenon isotopes are calculated as a function of decay time after the release. The ratios are then compared to those expected from nuclear explosions. The main conclusion from this work is that the two main factors that affect the nuclear forensic signal from radiopharmaceutical production facilities are the sample irradiation time and the use of emission gas storage tanks.  相似文献   

5.
In support of the Comprehensive Nuclear-Test-Ban Treaty (CTBT), improvements have been made to the model of the Automated Radioxenon Sampler/Analyzer (ARSA) β-γ coincidence detector for radioxenon monitoring. MCNPX is used to simulate the detector response for all the electrons and photons emitted from 131mXe, 133Xe, 133mXe, 135Xe, and 137Cs signals. A MatLab code was written to incorporate the MCNPX results in the calculation of β-γ coincidence spectra. These will aid in the development of the Spectral Deconvolution Analysis Tool (SDAT)1 and to calibrate β-γ coincidence systems. The models developed for this work include improvements over previous models in their ability to address Compton scattering in the β-cell, and the β-distribution offset in the 31 keV γ-ray region for 133Xe.  相似文献   

6.
The strategic value of noble gas capability has been recently recognized by ENEA for the acquisition of data about anthropogenic activities. Within the framework of institutional agreements, a laboratory for measurement of radioactive noble gases is under construction for environmental analysis and for monitoring studies in connection with issues related to the nuclear fuel cycle to distinguish the anthropogenic contributions to the environment. This research is intended to contribute also to the international effort to support the comprehensive nuclear-test-ban treaty verification capability. The present work summarizes the status of implementation of the noble gas laboratory at the ENEA Brasimone research centre that is located in the north-centre part of Italy by the Brasimone lake at about 850 m altitude. The radionuclides of interest are the following four xenon radioisotopes: 131mXe, 133mXe, 133Xe and 135Xe. The noble gas system under development at ENEA has three separate components: air collection (sampling and adsorption), processing (gas extraction and purification) and measurement (gamma-ray spectrometry analysis). The separation of the sampling equipment from the analysis is seen as necessary for the effectiveness of extensive sampling campaigns, as required in monitoring programs. Refurbishment is currently under way to accommodate a more sensitive acquisition system.  相似文献   

7.
The Preparatory Commission of Comprehensive Nuclear Test-Ban-Treaty Organization is setting up a global network capable to monitor treaty compliance. Specific monitoring systems and methodologies that match the needs of the International Monitoring System (IMS), namely to clarify the nuclear character of suspect explosions, had to be developed for monitoring purposes during the last decade. Four xenon isotopes, namely 133Xe, 135Xe, 133mXe and 131mXe play a key role here. A complex background from medical isotope production facilities and nuclear power plants, varying over four orders of magnitude, challenges the system’s capability to distinguish these from treaty-relevant events. Available measurement data are compared with model calculations. The importance of atmospheric transport modelling is demonstrated both for completely understanding the civilian background and for explaining peak concentrations and abnormal events. New methodologies for backtracking nuclide detections improved the capability to locate sources and corroborate the role of radioxenon monitoring.  相似文献   

8.
To support interpretation of observed atmospheric 135Xe, 133Xe, 133mXe and 131mXe, a database of xenon radioisotope in the primary coolant of CANDU reactors has been established. This database is comprised of 40000 records of high-quality xenon radioisotope analyses. Records from the database were retrieved by a specifically designed data-mining module and subjected to further analysis. Results from the analysis were subsequently used to study isotopic ratios of observed xenon radioisotopes in the CANDU reactor primary coolant. These studies provided novel and practical information on the characterization of CANDU reactor xenon radioisotope releases, which can be used to discriminate between reactor effluence and underground nuclear test releases.  相似文献   

9.
This study was performed under the joint TRMC/INER program for the determination of low level85Kr and133Xe concentrations in the environmental air samples. Based on cryogenic adsorption of krypton and xenon on charcoal followed by chromatographic separation from other gases, the85Kr and133Xe recovered from 200 liters of atmospheric air can be determined by either on-line gas flow proportional counter or liquid scintillation counting. The recovery yields of krypton and xenon examined by using85Kr and133Xe tracers were nearly 100%. The minimum detectable activity of85Kr and133Xe by gas flow proportional counting is about 7.40 Bq. The method is satisfactory for environmental monitoring applications under abnormal conditions of nuclear facilities. However, for lower level environmental85Kr and133Xe measurements, the liquid scintillation counting method can be applied due to their extremely low detection limits (i.e. 0.107 Bq and 0.093 Bq for85Kr and133Xe, respectively). Using this method, the measurable limits of concentrations are 0.535 Bq/m3 and 0.466 Bq/m3 for85Kr and133Xe, respectively.  相似文献   

10.
In this work, a Monte Carlo (MC) simulation model is established to accurately characterize a phoswich beta-gamma coincidence detector system. This model can be easily used to predict the beta-gamma coincidence efficiencies of xenon radioisotopes at various stable xenon concentrations in the counting cell. The results demonstrate that there is a significant inverse correlation between beta-gamma coincidence efficiency and stable xenon concentration. The influence of stable xenon concentration on beta-gamma coincidence counting efficiency has been investigated for each individual xenon radioisotope. The results indicate that the effect of stable xenon concentration on beta-gamma coincidence efficiency depends on the xenon radioisotope and its decay modes. The coincidence efficiency of 133Xe with 31.0-keV X-ray decay mode is the most affected one; and then followed by 131mXe, 133Xe with 81.0-keV gamma-ray decay mode, 133mXe and finally 135Xe. The study also indicates that the gamma absorption by xenon gas plays more of a role in the decrease of beta-gamma coincidence efficiency for 133Xe and 135Xe, and that the conversion electron spectrum shifting and broadening plays more of a role in the reduction of beta-gamma coincidence efficiency for the metastable radioxenon of 131mXe and 133mXe.  相似文献   

11.
The Spectral Deconvolution Analysis Tool (SDAT) software was developed to improve counting statistics and detection limits for nuclear explosion radionuclide measurements. SDAT utilizes spectral deconvolution spectroscopy techniques and can analyze both β–γ coincidence spectra for radioxenon isotopes and high-resolution HPGe spectra from aerosol monitors. The deconvolution algorithm of the SDAT requires a library of β–γ coincidence spectra of individual radioxenon isotopes to determine isotopic ratios in a sample. In order to get experimentally produced spectra of the individual isotopes, we have irradiated enriched samples of 130Xe, 132Xe, and 134Xe gas with a neutron beam from the TRIGA reactor at The University of Texas. The samples were counted in an Automated Radioxenon Sampler/Analyzer (ARSA) style β–γ coincidence detector. The spectra produced show that this method of radioxenon production yields samples with very high purity of the individual isotopes for 131mXe and 135Xe and a sample with a substantial 133mXe to 133Xe ratio.  相似文献   

12.
The Comprehensive Nuclear-Test-Ban Treaty (CTBT) specifies that radioxenon measurements should be performed at 40 or more stations worldwide within the International Monitoring System (IMS). Measuring radioxenon is one of the principle techniques to detect underground nuclear explosions. Specifically, presence and ratios of different radioxenon isotopes allows determining whether a detection event under consideration originated from a nuclear explosion or a civilian source. However, radioxenon monitoring on a global scale is a novel technology and the global civil background must be characterized sufficiently. This paper lays out a study, based on several unique measurement campaigns, of the worldwide concentrations and sources of verification relevant xenon isotopes. It complements the experience already gathered with radioxenon measurements within the CTBT IMS programme and focuses on locations in Belgium, Germany, Kuwait, Thailand and South Africa where very little information was available on ambient xenon levels or interesting sites offered opportunities to learn more about emissions from known sources. The findings corroborate the hypothesis that a few major radioxenon sources contribute in great part to the global radioxenon background. Additionally, the existence of independent sources of 131mXe (the daughter of 131I) has been demonstrated, which has some potential to bias the isotopic signature of signals from nuclear explosions.  相似文献   

13.
Absolute efficiency calibration of radiometric detectors is frequently difficult and requires careful detector modeling and accurate knowledge of the radioactive source used. In the past we have calibrated the β–γ coincidence detector of the Automated Radioxenon Sampler/Analyzer (ARSA) using a variety of sources and techniques which have proven to be less than desirable (Reeder et al., J Radioanal Nucl Chem, 235, 1989). A superior technique has been developed that uses the conversion-electron (CE) and X-ray coincidence of 131mXe to provide a more accurate absolute gamma efficiency of the detector. The 131mXe is injected directly into the beta cell of the coincident counting system and no knowledge of absolute source strength is required. In addition, 133Xe is used to provide a second independent means to obtain the absolute efficiency calibration. These two data points provide the necessary information for calculating the detector efficiency and can be used in conjunction with other noble gas isotopes to completely characterize and calibrate the ARSA nuclear detector. In this paper we discuss the techniques and results that we have obtained.  相似文献   

14.
Radionuclide monitoring, though slower than vibrational methods of explosion detection, provides a basic and certain component of Comprehensive Test Ban treaty (CTBT) verification. Measurement of aerosol radioactive debris, specifically a suite of short-lived fission products, gives high confidence that a nuclear weapon has been detonated in or vented to the atmosphere. The variable nature of wind-borne transport of the debris requires that many monitoring stations cover the globe to insure a high degree of confidence that tests which vent to the atmosphere will be detected within a reasonable time period. To fulfill the CTBT aerosol measurement requirements, a system has been developed at PNNL to automatically collect and measure radioactive aerosol debris, then communicate spectral data to a central data center. This development has proceeded through several design iterations which began with sufficient measurement capability (<30 μBq/m3 140Ba) and resulted in a system with a minimal footprint (1 m×2 m), minimal power requirement (1600W), and support of network infrastructure needs. The Mark IV prototype (Fig. 1) is currently the subject of an Air Force procurement with private industry to partially fulfill US treaty obligations under the CTBT. It is planned that the system will be available for purchase from a manufacturer in late 1997.  相似文献   

15.
Pacific Northwest National Laboratory uses beta-gamma coincidence detectors in a number of xenon sampling and measurement systems to enable simultaneous, sensitive measurements of 131Xe, 133Xe, 133mXe, and 135Xe for treaty monitoring applications. In recent years, a new style of beta–gamma detector was developed to improve upon the detector module used in the Automated Radioxenon Sampler/Analyzer. The results of an MCNP5 Monte Carlo simulation of the new detector cell are presented, with particular emphasis on the identification of an energy deposition sequence with the potential to introduce significant error into the detector efficiency calibration. This sequence occurs when an 81 keV gamma from 133Xe is absorbed in an inactive region of the CsI(Na) scintillator, followed by emission of a 31 keV X-ray from cesium (or possibly a 28.5 keV X-ray from iodine). These X-rays add excess counts into the 31 keV peak observed in the decay of 133Xe. The impact of this effect on different efficiency calibration techniques is discussed.  相似文献   

16.
As part of the development support for the Comprehensive Nuclear-Test-Ban Treaty (CTBT), the Prototype International Data Center (PIDC) has been processing radionuclide data since 1995. Radionuclide data received from field stations includes gamma-ray spectra, meteorological data, and state of health (SOH) information. To date over 20 radionuclide monitoring stations have transmitted data to the PIDC. The radionuclide monitoring system collects both aerosol and gas samples. Gamma-ray spectral analysis is performed on the samples to determine if they contain anthropogenic radionuclides indicative of nuclear debris. A key radionuclide monitored by this system is 137Cs. Due to the half-life of 137Cs (30.17 y), amounts of this radionuclide releases are still present in the soil and atmosphere as a result of past nuclear tests and reactor releases. 137Cs from these sources are routinely detected in the prototype CTBT radionuclide monitoring system. Out of the multiple stations that contribute data to the PIDC, the highest 137Cs activity concentrations and largest range of concentrations are observed at the Kuwait City, Kuwait station. A special study was conducted to investigate the concentrations, trends, and origin of 137Cs in the Kuwait aerosol. This study combines over four years worth of aerosol data, meteorological data and soil sample analysis to explore this matter.  相似文献   

17.
A simple and portable apparatus was developed for measurements of85Kr and133Xe that would be released into the atmosphere in an emergency situation of nuclear facilities. The method is based on cryogenic adsorption of these gases on charcoal followed by chromatographic separation from other gases. The85Kr and133Xe recovered from atmospheric air are determined separately by liquid scintillation counting. It takes about 1 hour for the stepwise determination of85Kr and133Xe. The atmospheric concentration of 3·10–3 Ci per m3 air (1.1·102 Bq/m3 air) is measurable for both nuclides with 20% counting error.  相似文献   

18.
The International Monitoring System for the Comprehensive Nuclear-Test-Ban Treaty will include measurements of Xe fission products. Pacific Northwest National Laboratory has developed an automated system for separating Xe from air which detects Xe fission products using a beta-gamma counting system for 131mXe, 133mXe, 133gXe, and 135gXe. Betas and conversion electrons are detected in a plastic scintillation cell containing the Xe sample. Gamma and X-rays are detected in a NaI(Tl) scintillation detector which surrounds the plastic scintillator sample cell. Two-dimensional pulse-height spectra of gamma-energy versus beta-energy are obtained. The plastic scintillator spectrum in coincidence with the 31-keV X-rays from 131mXe. 133mXe, and 133gXe is a complex mixture of conversion electrons and betas. A new technique to simultaneously measure the delayed coincidence (T 1/2 = 6.27 ns) between beta-particles from 133gXe and conversion electrons depopulating the 81-keV state in 133 Cs is being developed. This technique allows separation of the 133gXe beta spectrum from the conversion electrons due to 131mXe and 133mXe and uniquely quantifies all three nuclides.  相似文献   

19.
It is well known that radon is present in relatively high concentrations below the surface of the Earth due to natural decay of uranium and thorium. However, less information is available on the background levels of other isotopes such as 133Xe and 131mXe produced via spontaneous fission of either manmade or naturally occurring elements. The background concentrations of radioxenon in the subsurface are important to understand because these isotopes potentially can be used to confirm violations of the comprehensive nuclear-test-ban treaty during an on-site inspection. Recently, Pacific Northwest National Laboratory measured radioxenon concentrations from the subsurface at the Nevada Nuclear Security Site (NNSS—formerly known as the Nevada Test Site) to determine whether xenon isotope background levels could be detected from spontaneous fission of naturally occurring uranium or legacy 240Pu as a result of historic nuclear testing. In this paper, we discuss the results of those measurements and review the sources of xenon background that must be taken into account during OSI noble gas measurements.  相似文献   

20.
Characterization of transuranic waste is needed for decisions about waste site remediation. Soil-gas sampling for xenon isotopes can be used to define the locations of spent fuel and transuranic waste. Radioxenon in the subsurface is characteristic of transuranic waste and can be measured with extreme sensitivity using large-volume soil-gas samples. Measurements at the Hanford Site showed 133Xe and 135Xe levels indicative of 240Pu spontaneous fission. Stable xenon isotopic ratios from fission are distinct from atmospheric xenon background. Neutron capture by 135Xe produces an excess of 136Xe in reactor-produced xenon, providing a means of distinguishing spent fuel from separated transuranic material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号