首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The present work studies the reaction mechanism of the racemization of mandelate substrate by mandelate racemase enzyme. The reaction has some intriguing aspects such as the deprotonation of a nonacid hydrogen and the achievement of the pseudosymmetry necessary to obtain the racemic mixture. We will make use of a QM/MM potential energy surface to compute the free energy profiles associated with the reaction. The most favorable reaction mechanism consists of two proton transfers and the configuration inversion of the stereogenic carbon taking place in a concerted manner. We have also designed a suitable reaction coordinate to compute the free energy profiles for this rather complicated reaction. In addition, analysis of the electrostatic effects and bond distances along the reaction will explain how the enzyme accomplishes the catalysis. Finally, the enzymatic reaction will be compared to a model of the uncatalyzed reaction and the catalytic effect of mandelate racemase will be evaluated.  相似文献   

2.
Combined quantum mechanical/molecular mechanical simulations have been carried out to investigate the origin of the carbon acidity enhancement in the alanine racemization reaction catalyzed by alanine racemase (AlaR). The present study shows that the enhancement of carbon acidity of alpha-amino acids by the cofactor pyridoxal 5'-phosphate (PLP) with an unusual, unprotonated pyridine is mainly due to solvation effects, in contrast to the intrinsic electron-withdrawing stabilization by the pyridinium ion to form a quinonoid intermediate. Alanine racemase further lowers the alpha-proton acidity and provides an overall 14-17 kcal/mol transition-state stabilization. The second key finding of this study is that the mechanism of racemization of an alanine zwitterion in water is altered from an essentially concerted process to a stepwise reaction by formation of an external aldimine adduct with the PLP cofactor. Finally, we have used a centroid path integral method to determine the intrinsic kinetic isotope effects for the two proton abstraction reactions, which are somewhat greater than the experimental estimates.  相似文献   

3.
Formate dehydrogenase is a molybdoenzyme of the anaerobic formate hydrogen lyase complex of the Escherichia coli microorganism that catalyzes the oxidation of formate to carbon dioxide. The two proposed mechanisms of reaction, which differ in the occurrence of a direct coordination or not of a SeCys residue to the molybdenum metal during catalysis were analyzed at the density functional level in both vacuum and protein environments. Some DF functionals, in addition to the very popular B3LYP one, were employed to compute barrier heights. Results revealed the role played by the SeCys residue in performing the abstraction of the proton from the formate substrate. The computation of the energetic profiles for both mechanisms indicated that the reaction barriers are higher when the selenium is directly coordinated to the metal, whereas less energy is required when SeCys is not a ligand at the molybdenum site.  相似文献   

4.
Understanding the chemical step in the catalytic reaction of DNA polymerases is essential for elucidating the molecular basis of the fidelity of DNA replication. The present work evaluates the free energy surface for the nucleotide transfer reaction of T7 polymerase by free energy perturbation/empirical valence bond (FEP/EVB) calculations. A key aspect of the enzyme simulation is a comparison of enzymatic free energy profiles with the corresponding reference reactions in water using the same computational methodology, thereby enabling a quantitative estimate for the free energy of the nucleotide insertion reaction. The reaction is driven by the FEP/EVB methodology between valence bond structures representing the reactant, pentacovalent intermediate, and the product states. This pathway corresponds to three microscopic chemical steps, deprotonation of the attacking group, a nucleophilic attack on the P(alpha) atom of the dNTP substrate, and departure of the leaving group. Three different mechanisms for the first microscopic step, the generation of the RO(-) nucleophile from the 3'-OH hydroxyl of the primer, are examined: (i) proton transfer to the bulk solvent, (ii) proton transfer to one of the ionic oxygens of the P(alpha) phosphate group, and (iii) proton transfer to the ionized Asp654 residue. The most favorable reaction mechanism in T7 pol is predicted to involve the proton transfer to Asp654. This finding sheds light on the long standing issue of the actual role of conserved aspartates. The structural preorganization that helps to catalyze the reaction is also considered and analyzed. The overall calculated mechanism consists of three subsequent steps with a similar activation free energy of about 12 kcal/mol. The similarity of the activation barriers of the three microscopic chemical steps indicates that the T7 polymerase may select against the incorrect dNTP substrate by raising any of these barriers. The relative height of these barriers comparing right and wrong dNTP substrates should therefore be a primary focus of future computational studies of the fidelity of DNA polymerases.  相似文献   

5.
There is chemical and kinetic evidence that the mechanism of action of mandelate racemase occurs via two acid/base catalysts, one to abstract a proton from the -carbon and the second to deliver it back to the opposite face of the chiral center. Since the mechanistic details are not known, a few hypotheses have been put forward. Therefore we examine the viability of both concerted and sequential mechanisms on proton abstraction from the -carbon of mandelate, either without taking into account environmental effects or with the addition to the model system of several functional groups of the residues belonging to the active site, in order to restrain the partners to particular positions without actually imposing arbitrary constraints. The importance of the environment in screening the most highly charged groups in the substrate and in facilitating the -carbon-bound proton abstraction is evident. From the perusal of the geometries of the system along the reaction energy profile, it seems that there is no tendency toward a concerted mechanism: the proton delivery from mandelate to Lys occurs and subsequently the extra proton on protonated histidine is in turn delivered to mandelate.  相似文献   

6.
Combined QM/MM simulations have been carried out to investigate the origin of the carbon acidity enhancement in the alanine racemization reaction catalyzed by alanine racemase (AlaR). The present studies show that enhancement of carbon acidity of alpha-amino acids by cofactor pyridoxal 5'-phosphate, PLP, with an unusual, unprotonated pyridine is due to solvation effects, in contrast to the intrinsic electron-withdrawing stabilization by the pyridinium ion to form a quinonoid intermediate. Alanine racemase further lowers the alpha-proton acidity and provides an overall 14-17 kcal/mol transition state stabilization. Our computational results are consistent with the hypothesis that the use of the unusual form of PLP cofactor in AlaR is to raise the free energy of the intermediate, thereby increasing the reprotonation rate and enhancing the enzyme selectivity for racemization.  相似文献   

7.
Understanding the reaction mechanism underlying the functionalization of C−H bonds by an enzymatic process is one of the most challenging issues in catalysis. Here, combined approaches using density functional theory (DFT) analysis and transient kinetics were employed to investigate the reaction mechanism of C−H bond oxidation in d -glucose, catalyzed by the enzyme pyranose 2-oxidase (P2O). Unlike the mechanisms that have been conventionally proposed, our findings show that the first step of the C−H bond oxidation reaction is a hydride transfer from the C2 position of d -glucose to N5 of the flavin to generate a protonated ketone sugar intermediate. The proton is then transferred from the protonated ketone intermediate to a conserved residue, His548. The results show for the first time how specific interactions around the sugar binding site promote the hydride transfer and formation of the protonated ketone intermediate. The DFT results are also consistent with experimental results including the enthalpy of activation obtained from Eyring plots, as well as the results of kinetic isotope effect and site-directed mutagenesis studies. The mechanistic model obtained from this work may also be relevant to other reactions of various flavoenzyme oxidases that are generally used as biocatalysts in biotechnology applications.  相似文献   

8.
9.
Penicillin-binding protein 5 (PBP 5) of Escherichia coli hydrolyzes the terminal D-Ala-D-Ala peptide bond of the stem peptides of the cell wall peptidoglycan. The mechanism of PBP 5 catalysis of amide bond hydrolysis is initial acylation of an active site serine by the peptide substrate, followed by hydrolytic deacylation of this acyl-enzyme intermediate to complete the turnover. The microscopic events of both the acylation and deacylation half-reactions have not been studied. This absence is addressed here by the use of explicit-solvent molecular dynamics simulations and ONIOM quantum mechanics/molecular mechanics (QM/MM) calculations. The potential-energy surface for the acylation reaction, based on MP2/6-31+G(d) calculations, reveals that Lys47 acts as the general base for proton abstraction from Ser44 in the serine acylation step. A discrete potential-energy minimum for the tetrahedral species is not found. The absence of such a minimum implies a conformational change in the transition state, concomitant with serine addition to the amide carbonyl, so as to enable the nitrogen atom of the scissile bond to accept the proton that is necessary for progression to the acyl-enzyme intermediate. Molecular dynamics simulations indicate that transiently protonated Lys47 is the proton donor in tetrahedral intermediate collapse to the acyl-enzyme species. Two pathways for this proton transfer are observed. One is the direct migration of a proton from Lys47. The second pathway is proton transfer via an intermediary water molecule. Although the energy barriers for the two pathways are similar, more conformers sample the latter pathway. The same water molecule that mediates the Lys47 proton transfer to the nitrogen of the departing D-Ala is well positioned, with respect to the Lys47 amine, to act as the hydrolytic water in the deacylation step. Deacylation occurs with the formation of a tetrahedral intermediate over a 24 kcal x mol(-1) barrier. This barrier is approximately 2 kcal x mol(-1) greater than the barrier (22 kcal x mol(-1)) for the formation of the tetrahedral species in acylation. The potential-energy surface for the collapse of the deacylation tetrahedral species gives a 24 kcal x mol(-1) higher energy species for the product, signifying that the complex would readily reorganize and pave the way for the expulsion of the product of the reaction from the active site and the regeneration of the catalyst. These computational data dovetail with the knowledge on the reaction from experimental approaches.  相似文献   

10.
Thymidylate is a DNA nucleotide that is essential to all organisms and is synthesized by the enzyme thymidylate synthase (TSase). Several human pathogens rely on an alternative flavin-dependent thymidylate synthase (FDTS), which differs from the human TSase both in structure and molecular mechanism. It has recently been shown that FDTS catalysis does not rely on an enzymatic nucleophile and that the proposed reaction intermediates are not covalently bound to the enzyme during catalysis, an important distinction from the human TSase. Here we report the chemical trapping, isolation, and identification of a derivative of such an intermediate in the FDTS-catalyzed reaction. The chemically modified reaction intermediate is consistent with currently proposed FDTS mechanisms that do not involve an enzymatic nucleophile, and it has never been observed during any other TSase reaction. These findings establish the timing of the methylene transfer during FDTS catalysis. The presented methodology provides an important experimental tool for further studies of FDTS, which may assist efforts directed toward the rational design of inhibitors as leads for future antibiotics.  相似文献   

11.
Transaminase is a key enzyme for amino acid metabolism, which reversibly catalyzes the transamination reaction with the help of PLP (pyridoxal 5' -phosphate) as its cofactor. Here we have investigated the mechanism and free energy landscape of the transamination reaction involving the aspartate transaminase (AspTase) enzyme and aspartate-PLP (Asp-PLP) complex using QM/MM simulation and metadynamics methods. The reaction is found to follow a stepwise mechanism where the active site residue Lys258 acts as a base to shuttle a proton from α -carbon (CA) to imine carbon (C4A) of the PLP-Asp Schiff base. In the first step, the Lys258 abstracts the CA proton of the substrate leading to the formation of a carbanionic intermediate which is followed by the reprotonation of the Asp-PLP Schiff base at C4A atom by Lys258. It is found that the free energy barrier for the proton abstraction by Lys258 and that for the reprotonation are 17.85 and 3.57 kcal/mol, respectively. The carbanionic intermediate is 7.14 kcal/mol higher in energy than the reactant. Hence, the first step acts as the rate limiting step. The present calculations also show that the Lys258 residue undergoes a conformational change after the first step of transamination reaction and becomes proximal to C4A atom of the Asp-PLP Schiff base to favor the second step. The active site residues Tyr70* and Gly38 anchor the Lys258 in proper position and orientation during the first step of the reaction and stabilize the positive charge over Lys258 generated at the intermediate step.  相似文献   

12.
B3LYP density functional theory calculations are used to unravel the mysterious third step of aromatase catalysis. The feasibility of mechanisms in which the reduced ferrous dioxygen intermediate mediates androgen aromatization is explored and determined to be unlikely. However, proton-assisted homolysis of the peroxo hemiacetal intermediate to produce P450 compound I and the C19 gem-diol likely proceeds with a low energetic barrier. Mechanisms for the aromatization and deformylation sequence which are initiated by 1beta-hydrogen atom abstraction by P450 compound I are considered. 1beta-Hydrogen atom abstraction from substrates in the presence of the 2,3-enol encounters strikingly low barriers (5.3-7.8 kcal/mol), whereas barriers for this same process rise to 17.0-27.1 kcal/mol in the keto tautomer. Transition states for 1beta-hydrogen atom abstraction from enolized substrates in the presence of the 19-gem-diol decayed directly to the experimentally observed products. If the C19 aldehyde remains unhydrated, aromatization occurs with concomitant decarbonylation and therefore does not support dehydration of the C19 aldehyde prior to the final catalytic step. On the doublet surface, the transition state connects to a potentially labile 1(10) dehydrogenated product, which may undergo rapid aromatization, as well as formic acid. Ab initio molecular dynamics confirmed that the 1beta-hydrogen atom abstraction and deformylation or decarbonylation occur in a nonsynchronous, coordinated manner. These calculations support a dehydrogenase behavior of aromatase in the final catalytic step, which can be summarized by 1beta-hydrogen atom abstraction followed by gem-diol deprotonation.  相似文献   

13.
Conclusion The above developed ideas should not be regarded as criticism of the carbenium ionic conception in heterogeneous acid catalysis. They are aimed rather at its modernization.We consider the present form of this theory as oversimplified. Owing to the absence of solvation effects, surface intermediates of high temperature catalytic conversions of hydrocarbons are of much less ionic character than it is usually believed. Therefore, the carbenium ionic properties are characteristic of transition states but not stable intermediates of these reactions.Another feature of heterogeneous acid catalysis that is not usually taken into account is the bifunctional nature of its active sites. The acidic part protonates adsorbed molecules and the basic one either stabilizes intermediate structures or enables a reversible proton abstraction from transition states. In the case of substrates with a low proton affinity, this results in concerted mechanisms, where simultaneously with a proton transfer a new bond with the surface is formed. Deprotonation of intermediates in the case of catalytic transformations of hydrocarbons with a higher proton affinity supplies them with some features of adsorbed carbenes or ylides. This makes it possible to suggest new mechanisms of such acidic catalytic reactions as synthesis of hydrocarbons from methanol on high silica containing zeolites, olefin oligomerization, etc.  相似文献   

14.
Understanding the mechanisms by which beta-lactamases destroy beta-lactam antibiotics is potentially vital in developing effective therapies to overcome bacterial antibiotic resistance. Class A beta-lactamases are the most important and common type of these enzymes. A key process in the reaction mechanism of class A beta-lactamases is the acylation of the active site serine by the antibiotic. We have modeled the complete mechanism of acylation with benzylpenicillin, using a combined quantum mechanical and molecular mechanical (QM/MM) method (B3LYP/6-31G+(d)//AM1-CHARMM22). All active site residues directly involved in the reaction, and the substrate, were treated at the QM level, with reaction energies calculated at the hybrid density functional (B3LYP/6-31+Gd) level. Structures and interactions with the protein were modeled by the AM1-CHARMM22 QM/MM approach. Alternative reaction coordinates and mechanisms have been tested by calculating a number of potential energy surfaces for each step of the acylation mechanism. The results support a mechanism in which Glu166 acts as the general base. Glu166 deprotonates an intervening conserved water molecule, which in turn activates Ser70 for nucleophilic attack on the antibiotic. This formation of the tetrahedral intermediate is calculated to have the highest barrier of the chemical steps in acylation. Subsequently, the acylenzyme is formed with Ser130 as the proton donor to the antibiotic thiazolidine ring, and Lys73 as a proton shuttle residue. The presented mechanism is both structurally and energetically consistent with experimental data. The QM/MM energy barrier (B3LYP/ 6-31G+(d)//AM1-CHARMM22) for the enzymatic reaction of 9 kcal mol(-1) is consistent with the experimental activation energy of about 12 kcal mol(-1). The effects of essential catalytic residues have been investigated by decomposition analysis. The results demonstrate the importance of the "oxyanion hole" in stabilizing the transition state and the tetrahedral intermediate. In addition, Asn132 and a number of charged residues in the active site have been identified as being central to the stabilizing effect of the enzyme. These results will be potentially useful in the development of stable beta-lactam antibiotics and for the design of new inhibitors.  相似文献   

15.
The initial step of the acylation reaction catalyzed by acetylcholinesterase (AChE) has been studied by a combined ab initio quantum mechanical/molecular mechanical (QM/MM) approach. The reaction proceeds through the nucleophilic addition of the Ser203 O to the carbonyl C of acetylcholine, and the reaction is facilitated by simultaneous proton transfer from Ser203 to His447. The calculated potential energy barrier at the MP2(6-31+G) QM/MM level is 10.5 kcal/mol, consistent with the experimental reaction rate. The third residue of the catalytic triad, Glu334, is found to be essential in stabilizing the transition state through electrostatic interactions. The oxyanion hole, formed by peptidic NH groups from Gly121, Gly122, and Ala204, is also found to play an important role in catalysis. Our calculations indicate that, in the AChE-ACh Michaelis complex, only two hydrogen bonds are formed between the carbonyl oxygen of ACh and the peptidic NH groups of Gly121 and Gly122. As the reaction proceeds, the distance between the carbonyl oxygen of ACh and NH group of Ala204 becomes smaller, and the third hydrogen bond is formed both in the transition state and in the tetrahedral intermediate.  相似文献   

16.
A theoretical study of the Michael-type addition of 1,3-dicarbonyl compounds to α,β-unsaturated carbonyl compounds has been performed in the gas phase by means of the AM1 semiempirical method and by density functional theory (DFT) calculations within the B3LYP and M06-2X hybrid functionals. A molecular model has been selected to mimic the role of a base, which is traditionally used as a catalyst in Michael reactions, an acetate moiety to modulate its basicity, and point charges to imitate the stabilization of the negative charge developed in the substrate during the reaction when taking place in enzymatic environments. Results of the study of six different reactions obtained at the three different levels of calculations show that the reaction takes place in three steps: in the first step the α proton of the acetylacetone is abstracted by the base, then the nucleophilic attack on the β-carbon of the α,β-unsaturated carbonyl compound takes place generating the negatively charged enolate intermediate, and finally the product is formed through a proton transfer back from the protonated base. According to the energy profiles, the rate limiting step corresponds to the abstraction of the proton or the carbon-carbon bond formation step, depending on substituents of the substrates and method of calculation. The effect of the substituents on the acidity of the α proton of the acetylacetone and the steric hindrance can be analyzed by comparing these two separated steps. Moreover, the result of adding a positive charge close to the center that develops a negative charge during the reaction confirms the catalytic role of the oxyanion hole proposed in enzyme catalysed Michael-type additions. Stabilization of the intermediate implies, in agreement with the Hammond postulate, a reduction of the barrier of the carbon-carbon bond formation step. Our results can be used to predict the features that a new designed biocatalyst must present to efficiently accelerate this fundamental reaction in organic synthesis.  相似文献   

17.
The mechanism of hydrolysis of the nitrile (N-acetyl-phenylalanyl-2-amino-propionitrile, I) catalyzed by Gln19Glu mutant of papain has been studied by nanosecond molecular dynamics (MD) simulations. MD simulations of the complex of mutant enzyme with I and of mutant enzyme covalently attached to both neutral (II) and protonated (III) thioimidate intermediates were performed. An MD simulation with the wild-type enzyme.I complex was undertaken as a reference. The ion pair between protonated His159 and thiolate of Cys25 is coplanar, and the hydrogen bonding interaction S(-)(25).HD1-ND1(159) is observed throughout MD simulation of the mutant enzyme.I complex. Such a sustained hydrogen bond is absent in nitrile-bound wild-type papain due to the flexibility of the imidazole ring of His159. The nature of the residue at position 19 plays a critical role in the hydrolysis of the covalent thioimidate intermediate. When position 19 represents Glu, the imidazolium ion of His159-ND1(+).Cys25-S(-) ion pair is distant, on average, from the nitrile nitrogen of substrate I. Near attack conformers (NACs) have been identified in which His159-ImH(+) is positioned to initiate a general acid-catalyzed addition of Cys-S(-) to nitrile. Though Glu19-CO(2)H is distant from nitrile nitrogen in the mutant.I structure, MD simulations of the mutant.II covalent adduct finds Glu19-CO(2)H hydrogen bonded to the thioimide nitrogen of II. This hydrogen bonded species is much less stable than the hydrogen bonded Glu19-CO(2)(-) with mutant-bound protonated thioimidate (III). This observation supports Glu19-CO(2)H general acid catalysis of the formation of mutant.III. This is the commitment step in the Gln19Glu mutant catalysis of nitrile hydrolysis.  相似文献   

18.
《Tetrahedron letters》1986,27(13):1501-1504
The enantioselectivity shown by the title reaction is explained by an intramolecular hydrogen bond in an enamine intermediate resulting from nucleophilic catalysis by one molecule of proline and by a proton transfer mediated by a second molecule of proline.  相似文献   

19.
The mechanism of retaining glycosyltransferases is still poorly understood and the subject of current debate. Both double displacement and front side single displacement (SNi) mechanisms have been proposed. A "chemical rescue methodology" is here applied to a retaining alpha3-galactosyltransferase. Azide as exogenous nucleophile rescues the activity of the inactive E317A mutant to give beta-d-galactosylazide. This result fits best with a double displacement mechanism in which Glu317 is the enzyme nucleophile involved in the formation of a glycosyl-enzyme intermediate.  相似文献   

20.
Delta(5)-3-Ketosteroid Isomerase (KSI) catalyzes the isomerization of 5,6-unsaturated ketosteroids to their 4,5-unsaturated isomers at a rate approaching the diffusion limit. The isomerization reaction follows a two-step general acid-base mechanism starting with Asp38-CO(2)(-) mediated proton abstraction from a sp(3)-hybridized carbon atom, alpha to carbonyl group, providing a dienolate intermediate. In the second step, Asp38-CO(2)H protonates the C6 of the intermediate providing a 4,5-unsaturated ketosteroid. The details of the mechanism have been highly controversial despite several experimental and computational studies of this enzyme. The general acid-base catalysis has been proposed to involve either a catalytic diad or a cooperative hydrogen bond mechanism. In this paper, we report our results from the 1.5 nanosecond molecular dynamics (MD) simulation of enzyme bound natural substrate (E.S) and enzyme bound intermediate (E.In) solvated in a TIP3P water box. The final coordinates from our MD simulation strongly support the cooperative hydrogen bond mechanism. The MD simulation of E.S and E.In shows that both Tyr14 and Asp99 are hydrogen bonded to the O3 of the substrate or intermediate. The average hydrogen bonding distance between Tyr14-OH and O3 becomes shorter and exhibits less fluctuation on E.S --> E.In. We also observe dynamic motions of water moving in and out of the active site in the E.S structures. This free movement of water disappears in the E.In structures. The active site is shielded by hydrophobic residues, which come together and squeeze out the waters from the active site in the E.In complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号