首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It is shown that, for a certain proportion between the rib height (2–15 mm) installed at the test-section entrance and the turbulence level of the main flow (1–26%), there are extrema of parameters that describe mass transfer on the surface of an evaporating liquid fuel. In tests with and without combustion, discrete changes in the rates of heat and mass transfer are observed. Conditions for their manifestation are analyzed. Kutateladze Institute of Thermal Physics, Siberian Division, Russian Academy of Sciences, Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskava Fizika, Vol. 41, No.4, pp. 124–130, July–August, 2000.  相似文献   

2.
Ekaterinburg. Translated from Prikladaya Mekhanika i Tekhnicheskaya Fizika, No. 5, pp. 3–13, September–October, 1994.  相似文献   

3.
Novosibirsk. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, No. 1, pp. 32–40, January–February, 1995.  相似文献   

4.
In this article, we extend the work of Chakrabarti and Gupta (1979, Quart. Appl. Math., Vol. 37, pp. 73–78), and the work of Pop and Na (1998, Mechanics Research Communications, Vol. 25, pp. 263–269) to a Darcy–Brinkman porous medium.  相似文献   

5.
B?sk. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, No. 4, pp. 12–22, July–August, 1994.  相似文献   

6.
The seismic energy transferred to an elastic half-space as a result of a contact explosion and a meteorite impact on a planet’s surface is estimated. The seismic efficiency of the explosion and impact are evaluated as the ratio of the energy of the generated seismic waves to the energy of explosion or the kinetic energy of the meteorite. In the case of contact explosions, this ratio is in the range of 10−4–10−3. In the case of wide-scale impact effects, where the crater in the planet’s crust is produced in the gravitational regime, a formula is derived that relates the seismic efficiency of an impact to its determining parameters. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 2, pp. 3–12, March–April, 2007.  相似文献   

7.
A thin liquid sheet present in the shear layer of a compressible gas jet is investigated using an Eulerian approach with mixed-fluid treatment for the governing equations describing the gas–liquid two-phase flow system, where the gas is treated as fully compressible and the liquid as incompressible. The effects of different topological configurations, surface tension, gas pressure and liquid sheet thickness on the flow development of the gas–liquid two-phase flow system have been examined by direct solution of the compressible Navier–Stokes equations using highly accurate numerical schemes. The interface dynamics are captured using volume of fluid and continuum surface force models. The simulations show that the dispersion of the liquid sheet is dominated by vortical structures formed at the jet shear layer due to the Kelvin–Helmholtz instability. The axisymmetric case is less vortical than its planar counterpart that exhibits formation of larger vortical structures and larger liquid dispersion. It has been identified that the vorticity development and the liquid dispersion in a planar configuration are increased at the absence of surface tension, which when present, tends to oppose the development of the Kelvin–Helmholtz instability. An opposite trend was observed for an axisymmetric configuration where surface tension tends to promote the development of vorticity. An increase in vorticity development and liquid dispersion was observed for increased liquid sheet thickness, while a decreasing trend was observed for higher gas pressure. Therefore surface tension, liquid sheet thickness and gas pressure factors all affect the flow vorticity which consequently affects the dispersion of the liquid.   相似文献   

8.
A solution is obtained for the problem of the motion of a sphere in an ideal liquid bounded from outside by a wall which performs specified vibrations far from the sphere. Lavrent’ev Institute of Hydrodynamics, Siberian Division, Russian Academy of Sciences. Novosibirsk 630090, Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 40, No. 4, pp. 125–132, July–August. 1999.  相似文献   

9.
The effects of viscous dissipation on unsteady free convection from an isothermal vertical flat plate in a fluid saturated porous medium are examined numerically. The Darcy–Brinkman–Forchheimer model is employed to describe the flow field. A new model of viscous dissipation is used for the Darcy–Brinkman–Forchheimer model of porous media. The simultaneous development of the momentum and thermal boundary layers are obtained by using a finite difference method. Boundary layer and Boussinesq approximation have been incorporated. Numerical calculations are carried out for various parameters entering into the problem. Velocity and temperature profiles as well as local friction factor and local Nusselt number are shown graphically. It is found that as time approaches infinity, the values of friction factor and heat transfer coefficient approach steady state.  相似文献   

10.
S. S. Kutateladze Institute of Heat Physics, Siberian Branch of the Russian Academy of Sciences. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 36, No. 6, pp. 102–107, November–December, 1995.  相似文献   

11.
In the last 30 years, some authors have been studying several classes of boundary value problems (BVP) for partial differential equations (PDE) using the method of reduction to obtain a difference equation with continuous argument which behavior is determined by the iteration of a one-dimensional (1D) map (see, for example, Romanenko, E. Yu. and Sharkovsky, A. N., International Journal of Bifurcation and Chaos 9(7), 1999, 1285–1306; Sharkovsky, A. N., International Journal of Bifurcation and Chaos 5(5), 1995, 1419–1425; Sharkovsky, A. N., Analysis Mathematica Sil 13, 1999, 243–255; Sharkovsky, A. N., in “New Progress in Difference Equations”, Proceedings of the ICDEA'2001, Taylor and Francis, 2003, pp. 3–22; Sharkovsky, A. N., Deregel, Ph., and Chua, L. O., International Journal of Bifurcation and Chaos 5(5), 1995, 1283–1302; Sharkovsky, A. N., Maistrenko, Yu. L., and Romanenko, E. Yu., Difference Equations and Their Applications, Kluwer, Dordrecht, 1993.). In this paper we consider the time-delayed Chua's circuit introduced in (Sharkovsky, A. N., International Journal of Bifurcation and Chaos 4(5), 1994, 303–309; Sharkovsky, A. N., Maistrenko, Yu. L., Deregel, Ph., and Chua, L. O., Journal of Circuits, Systems and Computers 3(2), 1993, 645–668.) which behavior is determined by properties of one-dimensional map, see Sharkovsky, A. N., Deregel, Ph., and Chua, L. O., International Journal of Bifurcation and Chaos 5(5), 1995, 1283–1302; Maistrenko, Yu. L., Maistrenko, V. L., Vikul, S. I., and Chua, L. O., International Journal of Bifurcation and Chaos 5(3), 1995, 653–671; Sharkovsky, A. N., International Journal of Bifurcation and Chaos 4(5), 1994, 303–309; Sharkovsky, A. N., Maistrenko, Yu. L., Deregel, Ph., and Chua, L. O., Journal of Circuits, Systems and Computers 3(2), 1993, 645–668. To characterize the time-evolution of these circuits we can compute the topological entropy and to distinguish systems with equal topological entropy we introduce a second topological invariant.  相似文献   

12.
Novosibirsk. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, No. 5, pp. 32–44, Septerm–October, 1994.  相似文献   

13.
A numerical study of mixed convection in a vertical channel filled with a porous medium including the effect of inertial forces is studied by taking into account the effect of viscous and Darcy dissipations. The flow is modeled using the Brinkman–Forchheimer-extended Darcy equations. The two boundaries are considered as isothermal–isothermal, isoflux–isothermal and isothermal–isoflux for the left and right walls of the channel and kept either at equal or at different temperatures. The governing equations are solved numerically by finite difference method with Southwell–Over–Relaxation technique for extended Darcy model and analytically using perturbation series method for Darcian model. The velocity and temperature fields are obtained for various porous parameter, inertia effect, product of Brinkman number and Grashof number and the ratio of Grashof number and Reynolds number for equal and different wall temperatures. Nusselt number at the walls is also determined for three types of thermal boundary conditions. The viscous dissipation enhances the flow reversal in the case of downward flow while it counters the flow in the case of upward flow. The Darcy and inertial drag terms suppress the flow. It is found that analytical and numerical solutions agree very well for the Darcian model. An erratum to this article is available at .  相似文献   

14.
Institute of Thermophysics, Russian Academy of Sciences, Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 36, No. 3, pp. 98–115, May–June, 1995.  相似文献   

15.
The paper presents experimental data on the discharge and energy-loss coefficients for two weirs of polygonal profiles with lateral contraction, which are required, in particular, in simulations of partial dam-break waves. It is shown that the values of these coefficients for a trapezoidal weir with a slope ratio of 1: 3 differ insignificantly from their values for a rectangular weir. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 1, pp. 68–73, January–February, 2008.  相似文献   

16.
The inviscid equations of motion for the flow at the downstream side of a curved shock are solved for the shock–normal derivatives. Combining them with the shock–parallel derivatives yields gradients and substantial derivatives. In general these consist of two terms, one proportional to the rate of removal of specific enthalpy by the reaction, and one proportional to the shock curvature. Results about the streamline curvature show that, for sufficiently fast exothermic reaction, no Crocco point exists. This leads to a stability argument for sinusoidally perturbed normal shocks that relates to the formation of the structure of a detonation wave. Application to the deflection–pressure map of a streamline emerging from a triple shock point leads to the conclusion that, for non–reacting flow, the curvature of the Mach stem and reflected shock must be zero at the triple point, if the incident shock is straight. The direction and magnitude of the gradient at the shock of any flow quantity may be written down using the results. The sonic line slope in reacting flow serves as an example. Extension of the results – derived in the first place for plane flow – to three dimensions is straightforward. Received 12 February 1997 / Accepted 10 June 1997  相似文献   

17.
Understanding turbulence kinetic energy (TKE) budget in gas–liquid two-phase bubbly flows is indispensable to develop and improve turbulence models for the bubbly flows. In this study, a molecular tagging velocimetry based on photobleaching reaction was applied to turbulent bubbly flows with sub-millimeter bubbles in a vertical square duct to examine the applicability of the k–ε models to the bubbly flows. Effects of bubbles on TKE budget are discussed and a priori tests of the standard and low Reynolds number k–ε models are carried out to examine the applicability of these models to the bubbly flows. The conclusions obtained are as follows: (1) The photobleaching molecular tagging velocimetry is of use for validating turbulence models. (2) The bubbles increase the liquid velocity gradient in the near wall region, and therefore, enhance the production and dissipation rates of TKE. (3) The k–ε models can reasonably evaluate the production rate of TKE in the bubbly flows. (4) The modulations of diffusion due to the bubbles have different characteristics from the diffusion enhancement due to shear-induced turbulence. Hence, the k–ε models fail in evaluating the diffusion rate in the near wall region in the bubbly flows. (5) The k–ε models represent the trends of the production, dissipation, and diffusion rates of ε in the bubbly flow, although more accurate experimental data are required for quantitative validation of the ε equation.  相似文献   

18.
Moscow Physico-Technical Institute, Dolgoprudnyi Moscow Region 111700. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 36, No. 3, pp. 87–91, May–June, 1995  相似文献   

19.
Novosibirsk. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, No. 1, pp. 48–52, January–February, 1994.  相似文献   

20.
 This article presents the results of laboratory research on heat exchange while heating water in horizontal and vertical tubes with twisted-tape inserts. The scope of the research: 70 ≤ Re ≤ 4000 3.6 ≤ Pr ≤ 5.9 8.6 ≤ Gz ≤ 540 The research was held for three cases: – horizontal experimental tube – vertical experimental tube, the direction of flow according to the free convection vector – vertical experimental tube, the direction of flow not in accordance with the free convection vector For such cases the correlation equation was defined NuT=f(Gz; y), Nu = f(Gz) and the proportion NuT/Nu was analysed. Received on 30 March 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号