首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The one dimensional quantum walk of anyonic systems is presented. The anyonic walker performs braiding operations with stationary anyons of the same type ordered canonically on the line of the walk. Abelian as well as non-Abelian anyons are studied and it is shown that they have very different properties. Abelian anyonic walks demonstrate the expected quadratic quantum speedup. Non-Abelian anyonic walks are much more subtle. The exponential increase of the system’s Hilbert space and the particular statistical evolution of non-Abelian anyons give a variety of new behaviors. The position distribution of the walker is related to Jones polynomials, topological invariants of the links created by the anyonic world-lines during the walk. Several examples such as the SU(2)k and the quantum double models are considered that provide insight to the rich diffusion properties of anyons.  相似文献   

2.
We develop the general quantum measurement theory of non-Abelian anyons through interference experiments. The paper starts with a terse introduction to the theory of anyon models, focusing on the basic formalism necessary to apply standard quantum measurement theory to such systems. This is then applied to give a detailed analysis of anyonic charge measurements using a Mach-Zehnder interferometer for arbitrary anyon models. We find that, as anyonic probes are sent through the legs of the interferometer, superpositions of the total anyonic charge located in the target region collapse when they are distinguishable via monodromy with the probe anyons, which also determines the rate of collapse. We give estimates on the number of probes needed to obtain a desired confidence level for the measurement outcome distinguishing between charges, and explicitly work out a number of examples for some significant anyon models. We apply the same techniques to describe interferometry measurements in a double point-contact interferometer realized in fractional quantum Hall systems. To lowest order in tunneling, these results essentially match those from the Mach-Zehnder interferometer, but we also provide the corrections due to processes involving multiple tunnelings. Finally, we give explicit predictions describing state measurements for experiments in the Abelian hierarchy states, the non-Abelian Moore-Read state at ν=5/2 and Read-Rezayi state at ν=12/5.  相似文献   

3.
4.
We describe measurement-only topological quantum computation using both projective and interferometrical measurement of topological charge. We demonstrate how anyonic teleportation can be achieved using “forced measurement” protocols for both types of measurement. Using this, it is shown how topological charge measurements can be used to generate the braiding transformations used in topological quantum computation, and hence that the physical transportation of computational anyons is unnecessary. We give a detailed discussion of the anyonics for implementation of topological quantum computation (particularly, using the measurement-only approach) in fractional quantum Hall systems.  相似文献   

5.
We examine interferometric measurements of the topological charge of (non-Abelian) anyons. The target's topological charge is measured from its effect on the interference of probe particles sent through the interferometer. We find that superpositions of distinct anyonic charges a and a' in the target decohere (exponentially in the number of probes particles used) when the probes have nontrivial monodromy with the charges that may be fused with a to give a'.  相似文献   

6.
The anyonic excitations of topological two-body color code model are used to implement a set of gates. Because of two-body interactions, the model can be simulated in optical lattices. The excitations have nontrivial mutual statistics, and are coupled to nontrivial gauge fields. The underlying lattice structure provides various opportunities for encoding the states of a logical qubit in anyonic states. The interactions make the transition between different anyonic states, so being logical operation in the computational bases of the encoded qubit. Two-qubit gates can be performed in a topological way using the braiding of anyons around each other.  相似文献   

7.
Ying-Hai Wu 《中国物理 B》2022,31(3):37302-037302
Non-Abelian anyons can emerge as fractionalized excitations in two-dimensional systems with topological order. One important example is the Moore—Read fractional quantum Hall state. Its quasihole states are zero-energy eigenstates of a parent Hamiltonian, but its quasiparticle states are not. Both of them can be modeled on an equal footing using the bipartite composite fermion method. We study the entanglement spectrum of the cases with two or four non-Abelian anyons. The counting of levels in the entanglement spectrum can be understood using the edge theory of the Moore—Read state, which reflects the topological order of the system. It is shown that the fusion results of two non-Abelian anyons is determined by their distributions in the bipartite construction.  相似文献   

8.
《Nuclear Physics B》1999,552(3):677-706
The quantum mechanics and thermodynamics of SU(2) non-Abelian Chern-Simons particles (non-Abelian anyons) in an external magnetic field are addressed. We derive the N-body Hamiltonian in the (anti-) holomorphic gauge when the Hilbert space is projected onto the lowest Landau level of the magnetic field. In the presence of an additional harmonic potential, the N-body spectrum depends linearly on the coupling (statistics) parameter. We calculate the second virial coefficient and find that in the strong magnetic field limit it develops a step-wise behavior as a function of the statistics parameter, in contrast to the linear dependence in the case of Abelian anyons. For small enough values of the statistics parameter we relate the N-body partition functions in the lowest Landau level to these of SU(2) bosons and find that the cluster (and virial) coefficients dependence on the statistics parameter cancels.  相似文献   

9.
A spin-1/2 system on a honeycomb lattice is studied. The interactions between nearest neighbors are of XX, YY or ZZ type, depending on the direction of the link; different types of interactions may differ in strength. The model is solved exactly by a reduction to free fermions in a static Z2 gauge field. A phase diagram in the parameter space is obtained. One of the phases has an energy gap and carries excitations that are Abelian anyons. The other phase is gapless, but acquires a gap in the presence of magnetic field. In the latter case excitations are non-Abelian anyons whose braiding rules coincide with those of conformal blocks for the Ising model. We also consider a general theory of free fermions with a gapped spectrum, which is characterized by a spectral Chern number ν. The Abelian and non-Abelian phases of the original model correspond to ν = 0 and ν = ±1, respectively. The anyonic properties of excitation depend on ν mod 16, whereas ν itself governs edge thermal transport. The paper also provides mathematical background on anyons as well as an elementary theory of Chern number for quasidiagonal matrices.  相似文献   

10.
We discuss generalizations of quantum spin Hamiltonians using anyonic degrees of freedom. The simplest model for interacting anyons energetically favors neighboring anyons to fuse into the trivial ("identity") channel, similar to the quantum Heisenberg model favoring neighboring spins to form spin singlets. Numerical simulations of a chain of Fibonacci anyons show that the model is critical with a dynamical critical exponent z=1, and described by a two-dimensional (2D) conformal field theory with central charge c=7/10. An exact mapping of the anyonic chain onto the 2D tricritical Ising model is given using the restricted-solid-on-solid representation of the Temperley-Lieb algebra. The gaplessness of the chain is shown to have topological origin.  相似文献   

11.
We remove the need to physically transport computational anyons around each other from the implementation of computational gates in topological quantum computing. By using an anyonic analog of quantum state teleportation, we show how the braiding transformations used to generate computational gates may be produced through a series of topological charge measurements.  相似文献   

12.
首先求解具有delta函数型相互作用的任意子气体的含时薛定谔方程,给出了其多体波函数的解析解,并在此基础上详细分析了无相互作用情形和有相互作用情形下任意子噪声关联函数的特性.对于有相互作用的任意子气体,其噪声关联呈现出与无相互作用情形下不同的特性:散射相位具有一定的空间分布,一系列线性而不是尖峰出现在噪声关联函数中;线性的宽度、取向以及位置与任意子的统计参数和粒子间相互作用强度的关系都非常密切.特别地,在TG极限下,也就是相互作用趋于无限大的情形下,粒子间散射相位变为,任意子的噪声关联函数图样与无相互作用情形下的图样完全相反.  相似文献   

13.
首先求解具有delta函数型相互作用的任意子气体的含时薛定谔方程,给出了其多体波函数的解析解,并在此基础上详细分析了无相互作用情形和有相互作用情形下任意子噪声关联函数的特性。对于有相互作用的任意子气体,其噪声关联呈现出与无相互作用情形下不同的特性:散射相位具有一定的空间分布,一系列线性而不是尖峰出现在噪声关联函数中;线性的宽度、取向以及位置与任意子的统计参数和粒子间相互作用强度的关系都非常密切。特别地,在TG极限下,也就是相互作用趋于无限大的情形下,任意子的噪声关联函数图样与无相互作用情形下的图样完全相反。  相似文献   

14.
We show that for rotating harmonically trapped Bose gases in a fractional quantum Hall state, the anyonic excitation statistics in the rotating gas can effectively play a dynamical role. For particular values of the two-dimensional coupling constant g=-2pih2(2k-1)/m, where k is a positive integer, the system becomes a noninteracting gas of anyons, with exactly obtainable solutions satisfying Bogomol'nyi self-dual order parameter equations. Attractive Bose gases under rapid rotation thus can be stabilized in the thermodynamic limit due to the anyonic statistics of their quasiparticle excitations.  相似文献   

15.
We examine the effect of Landau level mixing on the braiding statistics of quasiparticles of Abelian and non-Abelian quantum Hall states. While path dependent geometric phases can perturb the Abelian part of the statistics, we find that the non-Abelian properties remain unchanged to an accuracy that is exponentially small in the distance between quasiparticles.  相似文献   

16.
Anyons can be used to realize quantum computation, because they are two-level systems in two dimensions. In this paper, we propose a scheme to simulate single-qubit gates and CNOT gate using Abelian anyons in the Kitaev model. Two pairs of anyons (six spins) are used to realize single-qubit gates, while ten spins are needed for the CNOT gate. Based on these quantum gates, we show how to realize the Grover algorithm in a two-qubit system.  相似文献   

17.
In this paper, a topological superfluid phase with Chern number ?? = ±1, possessing gapless edge states and non-Abelian anyonsis designed in a ?? = ±1 topological insulator proximity to ans-wave superfluid on an optical lattice with the effective gauge fieldand layer-dependent Zeeman field coupled to ultracold fermionic atoms’ pseudo spin. Wealso study its topological properties and calculate the phase stiffness by using therandom-phase-approximation approach. Finally we derive the temperature of theKosterlitz-Thouless transition by means of renormalized group theory. Owning to theexistence of non-Abelian anyons, this ?? = ±1 topological superfluid may be a possible candidate fortopological quantum computation.  相似文献   

18.
The model of nonrelativistic particles coupled to nonstandard (2+1)-gravity is extended to include Abelian or non-Abelian charges coupled to Chern–Simons gauge fields. Equivalently, the model may be viewed as describing the (Abelian or non-Abelian) anyonic dynamics of Chern–Simons particles coupled, in a reparameterization invariant way, to a translational Chern–Simons action. The quantum 2-body problem is described by a nonstandard Schr?dinger equation with a noninteger angular momentum depending on energy as well as particle charges. Some numerical results describing the modification of the energy levels by these charges in the confined regime are presented. The modification involves a shift as well as splitting of the levels. Received: 16 March 2001 / Published online: 13 June 2001  相似文献   

19.
Non-Abelian anyons exist in certain spin models and may exist in quantum Hall systems at certain filling fractions. In this work, we studied the ground state of dynamical SU(2) level-kappa Chern-Simons non-Abelian anyons at finite density and no external magnetic field. We find that, in the large-kappa limit, the topological interaction induces a pairing instability and the ground state is a superconductor with d+id gap symmetry. We also develop a picture of pairing for the special value kappa=2 and argue that the ground state is a superfluid of pairs for all values of kappa.  相似文献   

20.
We study a system of non-Abelian anyons in the lowest Landau level of a strong magnetic field. Using diagrammatic techniques, we prove that the virial coefficients do not depend on the statistics parameter. This is true for all representations of all non-Abelian groups for the statistics of the particles and relies solely on the fact that the effective statistical interaction is a traceless operator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号