首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We comment on both recent progress and lingering puzzles related to research on magnetic tunnel junctions (MTJs). MTJs are already being used in applications such as magnetic-field sensors in the read heads of disk drives, and they may also be the first device geometry in which spin-torque effects are applied to manipulate magnetic dynamics, in order to make non-volatile magnetic random access memory. However, there remain many unanswered questions about such basic properties as the magnetoresistance of MTJs, how their properties change as a function of tunnel-barrier thickness and applied bias, and what are the magnitude and direction of the spin-transfer-torque vector induced by a tunnel current.  相似文献   

2.
We calculate the spin-transfer torque in Fe/MgO/Fe tunnel junctions and compare the results with those for all-metallic junctions. The spin-transfer torque is interfacial due to the half-metallic nature of the Fe Delta1 states. For samples with typical interfacial roughness, the in-plane torque varies linearly with bias and the out-of-plane torque varies quadratically, both in quantitative agreement with experiment. For ideal samples, we predict that the out-of-plane component of the torque varies linearly with bias and oscillates as a function of the ferromagnetic layer thickness.  相似文献   

3.
We employ the spin-torque response of magnetic tunnel junctions with ultrathin MgO tunnel barrier layers to investigate the relationship between spin transfer and tunnel magnetoresistance (TMR) under finite bias, and find that the spin torque per unit current exerted on the free layer decreases by < 10% over a bias range where the TMR decreases by > 40%. This is inconsistent with free-electron-like spin-polarized tunneling and reduced-surface-magnetism models of the TMR bias dependence, but is consistent with magnetic-state-dependent decay lengths in the tunnel barrier.  相似文献   

4.
We predict an anomalous bias dependence of the spin transfer torque parallel to the interface, Tparallel, in magnetic tunnel junctions, which can be selectively tuned by the exchange splitting. It may exhibit a sign reversal without a corresponding sign reversal of the bias or even a quadratic bias dependence. We demonstrate that the underlying mechanism is the interplay of spin currents for the ferromagnetic (antiferromagnetic) configurations, which vary linearly (quadratically) with bias, respectively, due to the symmetric (asymmetric) nature of the barrier. The spin transfer torque perpendicular to interface exhibits a quadratic bias dependence.  相似文献   

5.
Two components of the spin torque exerted on a free ferromagnetic layer of finite thickness and a half-infinite ferromagnetic electrode in single tunnel junctions have been calculated in the spin-polarized free-electron-like one-band model. It has been found that the torque oscillates with the thickness of ferromagnetic layer and can be enhanced in the junction with the special layer thickness. The bias dependence of torque components also significantly changes with layer thickness. It is non-symmetric for the normal torque, in contrast to the symmetric junctions with two identical half-infinite ferromagnetic electrodes. The asymmetry of the bias dependence of the normal component of the torque can be also observed in the junctions with different spin splitting of the electron bands in the ferromagnetic electrodes.  相似文献   

6.
Magnetization orientation of a nanoscale ferromagnet can be manipulated by an electric current via spin-transfer torque(STT) effect,which holds great promise in the applications of non-volatile magnetic random access memory(MRAM) and spintorque oscillators.We review the fundamental mechanism and experimental progress of the STT effect.Then,different formula of STT torque has been classified,which can be added to the conventional Landau-Lifshitz-Gilbert equation.After that,we show some simulation results that mainly concern the STT-driven vortex dynamics,magnetization oscillations excited by a perpendicular polarizer,and the detail dynamics by in-plane and out-of-plane dual spin polarizers.  相似文献   

7.
We analytically determine the spatially varying spin-transfer torque within a domain wall. In the case of ballistic spin and diffusive charge transport, the spin-transfer torque as well as the local degree of nonadiabaticity oscillate within a domain wall. In narrow domain walls, the degree of nonadiabaticity ceases to be a constant material parameter but depends on the domain-wall width including a possible sign change, which is crucial for experiments and the technological utilization in spin-transfer-torque-based storage devices.  相似文献   

8.
In this paper we make a detailed comparison of the thermoelectric properties of quantum dot superlattices with those of equivalently doped bulk material and show that a major contribution to the enhancement of the figure of merit comes from the increase of the thermoelectric power over that of bulk, in addition to the lattice thermal conductivity reduction in quantum dot superlattices. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
10.
We present a study of electric, thermal, and thermoelectric transport in elemental bismuth, which presents a Nernst coefficient much larger than what was found in correlated metals. We argue that this is due to the combination of an exceptionally low carrier density with a very long electronic mean-free path. The low thermomagnetic figure of merit is traced to the lightness of electrons. Heavy-electron semimetals, which keep a metallic behavior in the presence of a magnetic field, emerge as promising candidates for thermomagnetic cooling at low temperatures.  相似文献   

11.
We have studied the dependence on the domain wall structure of the spin-transfer torque current density threshold for the onset of wall motion in curved, Gd-doped Ni(80)Fe(20) nanowires with no artificial pinning potentials. For single vortex domain walls, for both 10% and 1% Gd-doping concentrations, the threshold current density is inversely proportional to the wire width and significantly lower compared to the threshold current density measured for transverse domain walls. On the other hand for high Gd concentrations and large wire widths, double vortex domain walls are formed which require an increase in the threshold current density compared to single vortex domain walls at the same wire width. We suggest that this is due to the coupling of the vortex cores, which are of opposite chirality, and hence will be acted on by opposing forces arising through the spin-transfer torque effect.  相似文献   

12.
A two-dimensional voltage image of the energy gap distribution of a superconducting tunnel junction was obtained by scanning the current biased junction with an electron beam and detecting the voltage change δV. The value of the energy gap at the point of irradiation was determined quantitatively from the δV σ(V) curves, where σ(V) is the electric conductance of the junction. Further the quasiparticle diffusion length was found by measuring the length of the transition between a high- and low-gap region generated by a double tunnel junction configuration. The theoretical predictions could be verified by investigating a double tunnel junction configuration, where the energy gap could be changed deliberately by quasiparticle injection.  相似文献   

13.
Atomic substitution in alloys can efficiently scatter phonons, thereby reducing the thermal conductivity in crystalline solids to the "alloy limit." Using In0.53Ga0.47As containing ErAs nanoparticles, we demonstrate thermal conductivity reduction by almost a factor of 2 below the alloy limit and a corresponding increase in the thermoelectric figure of merit by a factor of 2. A theoretical model suggests that while point defects in alloys efficiently scatter short-wavelength phonons, the ErAs nanoparticles provide an additional scattering mechanism for the mid-to-long-wavelength phonons.  相似文献   

14.
T K Dey 《Pramana》1990,34(3):243-248
Temperature dependence of electrical conductivity and thermoelectric power are presented for In and Pb doped Bi + 8.28 at % Sb quenched tapes between 77 and 300K. The results are explained in terms of model for disordered semiconductors. Analysis of our data on electrical conductivity indicates the presence of a temperature independent part and a strongly temperature dependent part. While theT independent part originates from band conduction, theT dependent component could be understood considering the presence of localized states. Thermoelectric figure-of-merit of these tapes are also measured at 300K, which shows a large enhancement (∼40%) over that reported earlier on thin Bi-Sb films. This suggests that doped Bi-Sb quenched tapes may be considered as a candidate for material in producing economic and light weight thermoelectric devices.  相似文献   

15.
It is shown that the possible existence of a direct effect, which consists in the production of electric polarization in a temperature gradient, is connected with the existence of effects that are analogous to the known thermoelectric effects. The thermoelectric effects under study play a role in a periodic regime of temperature and electric current.The author expresses his thanks to Dr. V. Janovec, Ph. D., Dr. V. Dvoák, Ph. D., and Assoc. Prof. Dr. J. Kvasnica, Ph. D. for their valuable comments on this paper.  相似文献   

16.
We investigate the sensitivity and figure of merit (FOM) of a localized surface plasmon (LSP) sensor with gold nanograting on the top of planar metallic film. The sensitivity of the localized surface plasmon sensor is 317 nm/RIU, and the FOM is predicted to be above 8, which is very high for a localized surface plasmon sensor. By employing the rigorous coupled-wave analysis (RCWA) method, we analyze the distribution of the magnetic field and find that the sensing property of our proposed system is attributed to the interactions between the localized surface plasmon around the gold nanostrips and the surface plasmon polarition on the surface of the gold planar metallic film. These findings are important for developing high FOM localized surface plasmon sensors.  相似文献   

17.
Light emission of AlAl2O3-Ag structures prepared on periodic gratings was studied. It is shown that most of the observed light originates from the Ag-vacuum surface plasmons scattered by the periodic grating and surface roughness. Surface plasmons are directly excited by tunneling electrons.  相似文献   

18.
Using magnetron sputtering, we have prepared Co-Fe-B/tunnel barrier/Co-Fe-B magnetic tunnel junctions with tunnel barriers consisting of alumina, magnesia, and magnesia-alumina bilayer systems. The highest tunnel magnetoresistance ratios we found were 73% for alumina and 323% for magnesia-based tunnel junctions. Additionally, tunnel junctions with a unified layer stack were prepared for the three different barriers. In these systems, the tunnel magnetoresistance ratios at optimum annealing temperatures were found to be 65% for alumina, 173% for magnesia, and 78% for the composite tunnel barriers. The similar tunnel magnetoresistance ratios of the tunnel junctions containing alumina provide evidence that coherent tunneling is suppressed by the alumina layer in the composite tunnel barrier.  相似文献   

19.
MgO-based magnetic tunnel junctions (MTJs) with a layer sequence Ir22Mn78 or Fe50Mn50 (10 nm)/CoFe (2 nm)/Ru (0.85 nm)/CoFeB (0.5?t<2 nm)/MgO (2.5 nm)/CoFeB (3 nm) have been fabricated. The bias voltage dependence of tunneling magnetoresistance (TMR) is given as a function of the annealing temperature for these MTJs, which shows the TMR ratio changes its sign from inverted to normal at a critical bias voltage (VC) when an unbalanced synthetic antiferromagnetic stack CoFe/Ru/CoFeB is used. VCs change with the thickness of the pinned CoFeB and annealing temperature, which implies one can achieve different VCs by artificial control. The asymmetric VC values suggest that a strong density-of-states modification occurs at bottom oxide/ferromagnet interface.  相似文献   

20.
(CuAlO2)1-x(Ag2O)x specimens with 0 ≤ x ≤ 0.06 were prepared through the sintering of mixtures of CuO, Al2O3 and Ag2O powders at 1373 K. Hall effect, Seebeck coefficient and electrical conductivity measurements were subsequently employed to assess the electrical transport properties. The electrical conductivity of the as-sintered samples was found to increase with Ag2O addition as a result of increases in the carrier density. Over the temperature range of 323–623 K, the transport properties can be attributed to thermally activated transitions from the acceptor state to the valence band. In contrast, the variable range hopping theory is applicable over the temperature range of 623–873 K. Ag2O addition evidently reduces the defect binding energy in the electronic structure of the CuAlO2. The addition of this compound also obstructs the formation of both a spinel phase and CuO, such that the oxygen off-stoichiometry value and the carrier density are increased with increasing Ag2O levels. The presence of Ag metal has the main effect on thermal conductivity below 400 K, while above 400 K increases in the phonon concentration affect the conductivity. The highest value obtained for the figure of merit was 0.0044 at 573 K, from a sample containing 0.2 at.% Ag2O.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号