首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
A recent study showed that sarcosine may be potentially useful for the diagnosis and prognosis of prostate cancer (PCa). The aim of this study was to validate diagnostic value of sarcosine for PCa, to evaluate urine metabolomic profiles in patients with PCa in comparison of non-cancerous control, and to further explore the other potential metabolic biomarkers for PCa. Isotope dilution gas chromatography/mass spectrometry (ID GC/MS) metabolomic approach was applied to evaluate sarcosine using [methyl-D3]-sarcosine as an internal standard. Microwave-assisted derivatization (MAD) together with GC/MS was utilized to obtain the urinary metabolomic information in 20 PCa patients compared with eight patients with benign prostate hypertrophy and 20 healthy men. Acquired metabolomic data were analyzed using a two-sample t test. Diagnostic models for PCa were constructed using principal component analysis and were assessed with receiver–operating characteristic curves. Results showed that the urinary sarcosine level has no statistical difference between the PCa group and the control group. In addition, nine metabolomic markers between the PCa group and the healthy male group were selected, which constructed a diagnostic model with a high area under the curve value of 0.9425. We conclude that although urinary sarcosine value has limited potential in the diagnostic algorithm of PCa, urinary metabolomic panel based on GC/MS assay following MAD may potentially become a diagnostic tool for PCa.  相似文献   

2.
Peroxidase-catalysed reactions are used in a wide variety of analytical applications, most of them based on the final quantification of hydrogen peroxide. Clinical tests for glucose, cholesterol, creatine, creatinine or uric acid in blood or urine and enzyme-linked immunosorbent assays for pesticides, hepatitis or acquired immune deficiency syndrome are good examples of such applications. The most widely used and commercially available peroxidase for biotechnological processes and analytical applications is horseradish peroxidase followed, although in much lower proportion, by soybean peroxidase. The high commercial interest in peroxidases has led to the search for new sources of these enzymes. This work describes the analytical use of lentil plant peroxidase (LPP), which is a new peroxidase extracted from lentil plants (Lens culinaris Medikus); an abundant post-harvest agricultural waste in the area of Castilla y León (Spain). A procedure for the quantification of hydrogen peroxide in urine is first proposed using crude extract of lentil plant instead of the purified enzyme. This procedure is then applied to the determination of sarcosine; a natural amino acid that has attracted considerable interest in clinical diagnostics since urinary sarcosine was proposed and later questioned as a biomarker for prostate cancer. Under the action of sarcosine oxidase, sarcosine is oxidized by molecular oxygen to give glycine, formaldehyde and hydrogen peroxide that is quantified according to the previously proposed procedure. The limit of detection for both hydrogen peroxide and sarcosine is around 5?×?10(-7)?M. In the determination of sarcosine, the high selectivity of the overall enzymatic reaction, the simple sample treatment and instrumentation, the high-sample throughput and the use of LPP in the plant extract instead of the purified enzyme provide a rapid and inexpensive procedure with characteristics very suitable for routine analysis in a clinical laboratory.  相似文献   

3.
Sarcosine, an isomer of L-alanine, has been proposed as a prostate cancer progression biomarker [1]. Both compounds are detected in urine, where the measured sarcosine/alanine ratio has been found to be higher in prostate biopsy-positive group versus controls. We present here preliminary evidence showing that urine samples spiked with sarcosine/alanine can be partially resolved in 3 min via tandem differential mobility analysis-mass spectrometry (DMA-MS). Based on the calibration curves obtained for two mobility peaks, we finally estimate their concentration ratio in urine.  相似文献   

4.
Sarcosine level in serum is of important clinical significance in distinguishing prostate cancer. This work depicts an amperometric sarcosine biosensor with good anti-interference performance by electro-codepositing manganese phosphate, 3,4-ethylenedioxythiophene (EDOT) and indole-6-carboxylic acid (IA) on the glass carbon electrode. The prepared sarcosine biosensor has a wide linear detection range (1–55 μM) with a low detection limit of 0.11 μM. This work provides an anti-interference approach by controlling the surface charge density of the biosensor to sarcosine sensing, which has great potential to be used as point of care testing (POCT) device for the rapid detection of prostate cancer biomarkers.  相似文献   

5.
As the prostate cancer (PCa) progresses, sarcosine levels increase both in tumor cells and urine samples, suggesting that this metabolite measurements can help in the creation of non-invasive diagnostic methods for this disease. In this work, a biosensor device was developed for the quantification of sarcosine via electrochemical detection of H2O2 (at 0.6 V) generated from the catalyzed oxidation of sarcosine. The detection was carried out after the modification of carbon screen printed electrodes (SPEs) by immobilization of sarcosine oxidase (SOX) on the electrode surface. The strategies used herein included the activation of the carbon films by an electrochemical step and the formation of an NHS/EDAC layer to bond the enzyme to the electrode, the use of metallic or semiconductor nanoparticles layer previously or during the enzyme immobilization. In order to improve the sensor stability and selectivity a polymeric layer with extra enzyme content was further added. The proposed methodology for the detection of sarcosine allowed obtaining a limit of detection (LOD) of 16 nM, using a linear concentration range between 10 and 100 nM. The biosensor was successfully applied to the analysis of sarcosine in urine samples.  相似文献   

6.
Several years ago, sarcosine received attention as a prostate‐cancer marker. Prostate cancer is one of the most widespread types of tumor diseases in men. The prostate‐specific antigen is normally used as a marker, and it can only be detected in blood with a sensitivity of approximately 80%. In the present study, dummy molecularly imprinted polymers in microextraction by packed sorbent with on‐line liquid chromatography coupled to tandem mass spectrometry was used for the determination of sarcosine in human plasma and urine samples. The polymer network glycine was used for the dummy molecularly imprinted polymers. The selectivity of the method was evaluated using similar prostate‐cancer biomarkers. In addition, various parameters affecting the extraction performance were investigated. The method limits of detection and quantification in the plasma and urine were 1.0 and 3.0 ng/mL, respectively. The values of the coefficient of determination were over 0.99 for all runs in the studied concentration range (3.0–10 000 ng/mL). The method recovery was 87 and 89% in plasma and urine, respectively. The intraday and interday precisions of sarcosine in the plasma and urine samples were in the ranges of 4.0–7.1, 3.0–6.3, 2.9–4.7, and 5.0–6.7, respectively.  相似文献   

7.
Sarcosine is an amino acid derivative of N-methylglycine and is involved in the amino acid metabolism and methylation processes that are enriched during prostate cancer progression. It could also serve as a new target to be measured during therapeutic interventions and help in the identification of aggressive tumors for radical treatment. In this study, we present a new urine test that can help early diagnosis of prostate cancer. The method for the quantification of sarcosine in urine consists of a solid-phase microextraction (SPME) step followed by gas chromatography–triple quadrupole mass spectrometry analysis. We used a preliminary derivatization step with ethyl chloroformate/ethanol and the corresponding ester was then extracted by SPME in immersion mode. Several fibers were evaluated and the optimization of the parameters affecting the SPME process was carried out using an experimental design. The optimal values were 20 min extraction time, 10% NaCl, and 270°C using a divinylbenzene/Carboxen/polydimethylsiloxane fiber. The triple quadrupole analyzer acquired data in selected reaction monitoring mode, allowing us to obtain reconstructed chromatograms with well-defined chromatographic peaks. The accuracy and precision of this method were evaluated at concentrations of 70, 250, and 800 ng/ml and were found to be acceptable. Very satisfactory values (0.10 and 0.16 ng/ml, respectively) were also achieved for the limit of detection and the limit of quantification. The proposed protocol represents a rapid, simple, selective, and sensitive tool to quantify sarcosine in urine samples for prostate cancer diagnosis and for a screening test.  相似文献   

8.
The use of fumed silica for the direct determination of lead in urine by differential-pulse anodic stripping voltammetry was investigated. Fumed silica, added to urine prior to the nitrogen purge step, completely removed sorption interferences by urinary organic constituents. Values for lead in urine from eight unexposed individuals were 3 ± 2 μg l?1 or 3 ± 2 μg g?1 creatinine. This method is a fast, simple and effective means for the accurate determination of lead in undiluted urine without pretreatment.  相似文献   

9.
Since sarcosine and d,l-alanine co-elute on reversed-phase high-performance liquid chromatography (HPLC) columns and the tandem mass spectrometer cannot differentiate them due to equivalent parent and fragment ions, derivatization is often required for analysis of sarcosine in LC/MS systems. This study offers an alternative to derivatization by employing partial elimination of sarcosine by enzymatic oxidation. The decrease in apparent concentration from the traditionally merged sarcosine–alanine peak associated with the enzymatic elimination has been shown to be proportional to the total sarcosine present (R 2?=?0.9999), allowing for determinations of urinary sarcosine. Sarcosine oxidase was shown to eliminate only sarcosine in the presence of d,l-alanine, and was consequently used as the selective enzyme. This newly developed technique has a method detection limit of 1 μg/L (parts per billion) with a linear range of 3 ppb–1 mg/L (parts per million) in urine matrices. The method was further validated through spiked recoveries of real urine samples, as well as the analysis of 35 real urine samples. The average recoveries for low, middle, and high sarcosine concentration spikes were 111.7, 90.8, and 90.1 %, respectively. In conclusion, this simple enzymatic approach coupled with HPLC/MS/MS is able to resolve sarcosine from d,l-alanine leading to underivatized quantification of sarcosine.
Figure
Enzymatic elimination of sarcosine from alanine  相似文献   

10.
A simple, direct procedure for the measurement of cadmium in urine is described. Graphite-furnace atomic absorption spectrometry is used in conjunction with selective atomisation at 800°C from a L'vov platform. Urine samples are diluted with an equal volume of deionised water and 20-μl aliquots are injected. Calibration is done by standard additions. The sensitivity is 0.016 μg Cd l?1 for 1% absorption for a 20-μl sample. Within-run precision is 4.9% at 0.84 μg l?1. The detection limit is 0.06 μg l?1, which allows normal unexposed levels of cadmium in urine to be determined. The method is applicable to the determination of urinary cadmium levels of both occupationally non-exposed and exposed populations.  相似文献   

11.
Sarcosine, a potential biomarker of prostate cancer, has drawn great attention in recent years. However, controversial research keeps arising about its role as a biomarker that might come from the two isomers (α‐alanine and β‐alanine) of sarcosine due to their same molecular weight and similar properties, which could interfere with the accurate detection of sarcosine. In this study, a simple and sensitive method was developed for the detection of sarcosine and the two isomers by LC with ion‐trap MS through a novel derivatization reagent N,N′‐dicyclohexylcarbodiimide. N,N′‐Dicyclohexylcarbodiimide is usually considered as a condensation reagent, however, it was directly used as a derivatization reagent through a rearrangement side reaction in this study. The proposed method not only improved the chromatographic retention behavior of sarcosine and its two isomers, which was a benefit to their separation, but also dramatically enhanced the detection sensitivity of sarcosine, which was more favorable for real sample analysis. The factors affecting the productivity of the derivatization reaction, such as reaction time and amount of derivatization reagent, were systematically optimized. The method shows good linearity (R2 > 0.99), sensitivity with LODs of sarcosine as low as 1 ng/mL, and repeatability with the RSD < 6.07%. The developed method was applied to the analysis of urine.  相似文献   

12.
Sarcosine, an isomer of l-alanine, has been recently proposed as a potential biomarker for prostate cancer risk and aggressiveness, while some studies debated its importance. As both sarcosine and l-alanine are present in human urine, it is a great challenge to separate and accurately quantify these isobaric (i.e., same m/z) compounds by chromatographic separation and mass spectrometric detection. In this study, we developed a novel 1,3-dipolar cycloaddition derivatization method that resolves sarcosine from l-alanine and allows accurate quantification of sarcosine in human urine by gas chromatography–mass spectrometry (GC–MS). This novel derivatization approach was specific to sarcosine only, while the common silylanization method resulted in overlapped derivates of both sarcosine and l-alanine. The derivatization conditions, including reagent amount, reaction temperature and time, were optimized. The method developed here has excellent precision (relative standard deviation <4.7 %, n = 5), good linearity (slope = 0.2408; r 2 = 0.9996, 0.1–100 μg mL?1), and a low limit of detection in human urine (0.15 ng mL?1). Application of this analytical method to urine samples spiked with standard sarcosine indicates that it is a robust and powerful alternative for resolving and quantifying sarcosine from l-alanine isomer in human urine by GC–MS.  相似文献   

13.
Veterinary drugs (VDs) can remain in milk as a consequence of their use in livestock. In order to control the levels of VD residues in milk, screening methodologies can be applied for a rapid discrimination among negative and non-negative samples. In a second stage, non-negative samples are classified as negative or positive samples by using a confirmation method. Pre-target screening methods in low resolution MS (LRMS) are normally applied, but the number of analytes is limited, whereas the information obtained by full scan acquisition in high resolution mass spectrometry (HRMS) is improved. Here, three screening methods (running time<4 min) based on Orbitrap, quadrupole-time of flight (QqTOF) and triple quadrupole (QqQ) have been compared, using in all cases ultra-high performance liquid chromatography (UHPLC). For HRMS, the identification of the VDs was based on retention time (RT) and accurate mass measurements. Confirmation was based on the monitoring of fragments generated without precursor selection. The performance characteristics of the screening method provided reliable information regarding the presence or absence of the compounds below an established value, including uncertainty region and cut-off values. Better results in terms of cut-off values (≤ 5.0 μg kg(-1), except for spiramycin with a cut-off of 13.4 μg kg(-1) for milk samples and 43.1 μg kg(-1) for powdered milk based, emamectin with a cut-off of 42.2 μg kg(-1) for milk samples and doxycycline, with a cut-off value of 15.8 μg kg(-1) in powdered milk-based infant formulae) and uncertainty region were obtained using the Orbitrap-based screening method, which was submitted to further validation and used to analyze different real milk samples. The proposed method can be used in routine analysis, providing reliable results.  相似文献   

14.
The detection of cancer biomarkers is of great significance for the early screening of cancer. Detecting the content of sarcosine in blood or urine has been considered to provide a basis for the diagnosis of prostate cancer. However, it still lacks simple, high-precision and wide-ranging sarcosine detection methods. In this work, a Ti3C2TX/Pt–Pd nanocomposite with high stability and excellent electrochemical performance has been synthesized by a facile one-step alcohol reduction and then used on a glassy carbon electrode (GCE) with sarcosine oxidase (SOx) to form a sarcosine biosensor (GCE/Ti3C2TX/Pt–Pd/SOx). The prominent electrocatalytic activity and biocompatibility of Ti3C2TX/Pt–Pd enable the SOx to be highly active and sensitive to sarcosine. Under the optimized conditions, the prepared biosensor has a wide linear detection range to sarcosine from 1 to 1000 µM with a low limit of detection of 0.16 µM (S/N = 3) and a sensitivity of 84.1 µA/mM cm2. Besides, the reliable response in serum samples shows its potential in the early diagnosis of prostate cancer. More importantly, the successful construction and application of the amperometric biosensor based on Ti3C2TX/Pt–Pd will provide a meaningful reference for detecting other cancer biomarkers.  相似文献   

15.
Sarcosine has been identified as a potential prostate cancer marker. To provide determination of this compound, a number of methods are developing. In this study, we optimized a method for its separation by hydrophilic interaction LC with electrochemical detection (ED). Due to the fact that mobile phases commonly used for this type of separation altered the LODs measured by electrochemical detectors, we applied postcolumn dosing of buffer suitable for ED. The optimized conditions were mobile phase A acetonitrile, mobile phase B water in the ratio A/B 70:30, with postcolumn addition of mobile phase C (200 mM phosphate buffer pH 9). The optimal mixing ratio was A + B/C 1:1 with a flow rate of 0.80 mL/min (0.40 + 0.40 mL/min) and detection potential of 1000 mV. Due to the optimization of the parameters for effective separation, which had to meet the optimal parameters of ED, we reached a good resolution for separation also with a good LOD (100 nM). In addition, we successfully carried out sarcosine analysis bound on our modified paramagnetic microparticles with the ability to preconcentrate sarcosine isolated from artificial urine.  相似文献   

16.
The proposed palladium nanoparticles (Pd NPs), which with the catalytic activity similar to the horseradish peroxidase (HRP) mimic enzyme, can effectively catalyze the H2O2-mediated oxidation of 3,3′,5,5′-tetramethylbenzidine sulfate (TMB) accompanied with a color change from colorless to blue in solution. And as a result, the sensitive detection of sarcosine can be realized by the naked eye observation and ultraviolet spectrophotometry, using Pd NPs as catalyst and TMB as the substrate of the simulation enzyme catalytic reaction. Under the optimal condition, the catalytic system of Pd NPs mimic enzyme can be used for the detection of sarcosine. It has been found that the color change could be clearly observed with the naked eyes, and the absorbance intensity at 653 nm showed a fine linear fitting with the concentration of sarcosine in the range from 0.01 μM to 50 μM, and the detection limit (3σ/S) for sarcosine was calculated to be 5.0 nM. In order to evaluate the feasibility and reliability, the method was also used for analyzing concentrations of sarcosine in human urine samples from diagnosed prostate cancer patients and healthy donors. It is expected to provide a convenient and efficient method for indirect evaluation for the diagnosis of prostatic carcinoma (PCa).  相似文献   

17.
The preparation and validation of a number of clinical reference materials for the determination of lead in blood and urine is described. Four candidate blood lead reference materials (Lots, 047–050), and four candidate urine lead reference materials (Lots, 034, 035, 037 and 038), containing physiologically-bound lead at clinically relevant concentrations, were circulated to up to 21 selected laboratories specializing in this analysis. Results from two interlaboratory studies were used to establish certified values and uncertainty estimates for these reference materials. These data also provided an assessment of current laboratory techniques for the measurement of lead in blood and urine. For the blood lead measurements, four laboratories used electrothermal atomization AAS, three used anodic stripping voltammetry and one used both ETAAS and ICP-MS. For the urine lead measurements, 11 laboratories used ETAAS (most with Zeeman background correction) and 10 used ICP-MS. Certified blood lead concentrations, ±S.D., ranged from 5.9±0.4 μg/dl (0.28±0.02 μmol/l) to 76.0±2.2 μg/dl (3.67±0.11 μmol/l) and urine lead concentrations ranged from 98±5 μg/l (0.47±0.02 μmol/l) to 641±36 μg/l (3.09±0.17 μmol/l). The highest concentration blood lead material was subjected to multiple analyses using ETAAS over an extended time period. The data indicate that more stringent internal quality control practices are necessary to improve long-term precision. While the certification of blood lead materials was accomplished in a manner consistent with established practices, the urine lead materials proved more troublesome, particularly at concentrations above 600 μg/l (2.90 μmol/l).  相似文献   

18.
Sarcosine is a potential prostate cancer marker. In this study, we developed a method of three‐phase solvent bar liquid‐phase microextraction combined with high‐performance liquid chromatography to determine sarcosine after derivatization with 4‐dimethylarminoazobenzene‐4‐sulfonyl chloride from human urine. The effects of different extraction conditions on extraction efficiency were investigated and optimized. Under optimum experimental conditions, a calibration graph exhibited linearity over the range of 0.05–25 μmol/L with a correlation coefficient (r2) of 0.9990. The enrichment factor was 168, and the detection limit was 0.02 μmol/L. The method was successfully used to analyze sarcosine in human urine and non‐invasive detection, and good spiked recoveries ranging from 90.5 to 93.6% were obtained. The proposed method exhibited high sensitivity, high enrichment factor, good precision, and a simple setup. It may contribute to the early accurate diagnosis and the progression monitoring of prostatic carcinoma.  相似文献   

19.
Zheng YF  Xu GW  Liu DY  Xiong JH  Zhang PD  Zhang C  Yang Q  Lv S 《Electrophoresis》2002,23(24):4104-4109
Thirteen normal and modified nucleosides, primarily degradation products of transfer ribonucleic acid (tRNA), were evaluated as potential tumor markers for cancer patients. Their urinary concentrations were determined by means of micellar electrokinetic capillary chromatography (MEKC) in the urine from 54 healthy adults and 70 cancer patients, then quantitatively expressed as a function of creatinine excretion. It was found that urinary nucleosides for cancer patients were on the average significantly higher than those for healthy controls, however, no significant differences were found between male and female or between different ages. Based on 13 urinary nucleoside concentrations, principal component analysis (PCA) could be used to classify 72% of cancer patients from the healthy controls. The present study shows that the precise measurement of urinary nucleosides by MEKC in combining with PCA technique may provide a clinically useful approach for diagnosis of cancer.  相似文献   

20.
Congeneric groups of chlorinated diphenylmethanes (ClDPM) and triphenylmethanes (ClTPM) identified by coupled GC/MS investigations of Elbe and Mulde river sediments were not as yet noticed as environmental contaminants of aquatic sediments. ClDPM and ClTPM are structurally related to other polychlorinated aromatic compounds and form complex mixtures of congeners. Individual ClDPM/ClTPM as well as mixtures of congerers were synthesized, and served as reference compounds for isomer identification and quantitative analysis. In addition to mass spectra, GC/FTIR-investigations and retention indices proved to be valuable for structural assignments. Sediments from the Mulde river contained up to 220 μg/kg ClTPM and 170 μg/kg ClDPM. The spatial distribution of ClDPM/TPM concentrations indicated a strong localized source of emisson at the lower Mulde river, from where the compounds enter sediments and suspended matter of the Elbe river. The occurrence of ClTPM in the Hamburg harbour at comparable levels in samples of recent and older sediments indicates emissions over a prolonged period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号