首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A green and simple method, ionic liquid‐based microwave‐assisted surfactant‐improved dispersive liquid–liquid microextraction and derivatization was developed for the determination of aminoglycosides in milk samples. Nonionic surfactant Triton X‐100 and ionic liquid 1‐hexyl‐3‐methylimidazolium hexafluorophosphate were used as the disperser and extraction solvent, respectively. Extraction, preconcentration, and derivatization of aminoglycosides were carried out in a single step. Several experimental parameters, including type and volume of extraction solvent, type and concentration of surfactant, microwave power and irradiation time, concentration of derivatization reagent, and pH value and volume of buffer were investigated and optimized. Under the optimum experimental conditions, the linearities for determining the analytes were in the range 0.4–10.0 ng/mL for tobramycin, 1.0–25.0 ng/mL for neomycin, and 2.0–50.0 ng/mL for gentamicin, with the correlation coefficients ranging from 0.9991 to 0.9998. The LODs for the analytes were between 0.11 and 0.50 ng/mL. The present method was applied to the analysis of different milk samples, and the recoveries of aminoglycosides obtained were in the range 96.4–105.4% with the RSDs lower than 5.5%. The results showed that the present method was a rapid, convenient, and environmentally friendly method for the determination of aminoglycosides in milk samples.  相似文献   

2.
Xu X  Su R  Zhao X  Liu Z  Li D  Li X  Zhang H  Wang Z 《Talanta》2011,85(5):2632-2638
A simple method based on simultaneous microwave-assisted derivatization and ionic liquid-based dispersive liquid-liquid microextraction (IL-based DLLME) is proposed for the derivatization, extraction and preconcentration of formaldehyde in beverage samples prior to the determination by high-performance liquid chromatography (HPLC). Formaldehyde was in situ derivatized with 2,4-dinitrophenylhydrazine (DNPH) and simultaneously extracted and preconcentrated by using microwave-assisted derivatization and IL-based DLLME in a single step. Several experimental parameters, including type and volume of extraction solvent, type and volume of disperser, microwave power and irradiation time, volume of DNPH, pH of sample solution, and ionic strength were evaluated. When the microwave power was 120 W, formaldehyde could be derivatized and extracted simultaneously only within 90 s. Under optimal experimental conditions, good linearity was observed in the range of 0.5-50 ng/mL with the correlation coefficient of 0.9965, and the limit of detection was 0.12 ng/mL. The proposed method was applied to the analysis of different beverage samples, and the recoveries of formaldehyde obtained were in the range of 84.9-95.1% with the relative standard deviations lower than 8.4%. The results showed that the proposed method was a rapid, convenient and feasible method for the determination of formaldehyde in beverage samples.  相似文献   

3.
A new analytical method based on simultaneous derivatization and dispersive liquid–liquid microextraction (DLLME) followed by gas chromatography–mass spectrometry (GC–MS), for the determination of the allergenic compounds atranol and chloroatranol in perfumes, is presented. Derivatization of the target analytes by means of acetylation with anhydride acetic in carbonate buffer was carried out. Thereby volatility and detectability were increased for improved GC–MS sensitivity. In addition, extractability by DLLME was also enhanced due to a less polar character of the solutes. A liquid–liquid extraction was performed before DLLME to clean up the sample and to obtain an aqueous sample solution, free of the low polar matrix from the essential oils, as donor phase. Different parameters, such as the nature and volume of both the extraction and disperser solvents, the ionic strength of the aqueous donor phase or the effect of the derivatization reagent volume, were optimized. Under the selected conditions (injection of a mixture of 750 μL of acetone as disperser solvent, 100 μL of chloroform as extraction solvent and 100 μL of anhydride acetic as derivatization reagent) the figures of merit of the proposed method were evaluated. Limits of detection in the low ng mL−1 range were obtained. Matrix effect was observed in real perfume samples and thus, standard addition calibration is recommended.  相似文献   

4.
Chiang JS  Huang SD 《Talanta》2008,75(1):70-75
The one-step derivatization and extraction technique for the determination of anilines in river water by dispersive liquid-liquid microextraction (DLLME) is presented. In this method the anilines are extracted by DLLME and derivatized with pentafluorobenzaldehyde (PFBAY) in aqueous solution simultaneously. In this derivatization/extraction method, 0.5 ml acetone (disperser solvent) containing 10 microl chlorobenzene (extraction solvent) and 30 g/l pentafluorobenzaldehyde (PFBAY) dissolved in methanol was rapidly injected by syringe into 5 ml aqueous sample (pH 4.6). Within 20 min the analytes extracted and derivatized were almost finished. After centrifugation, 2 microl sedimented phase containing enriched analytes was determined by GC-MS. The effects of extraction and disperser solvent type and their volume, pH value of sample solution, derivatization and extraction time, derivatization and extraction temperature were investigated. Linearity in this developed method was ranging from 0.25 to 70 microg/l, and the correlation coefficients (R2) were between 0.9955 and 0.9989, and reasonable reproducibility ranging from 5.8 to 11.8% (n=5). Method detection limits (MDLs) ranged from 0.04 to 0.09 microg/l (n=5).  相似文献   

5.
Simultaneous dispersive liquid-liquid microextraction (DLLME) and derivatization combined with gas chromatography-electron-capture detection (GC-ECD) was used to determine chlorophenols (CPs) in water sample. In this derivatization/extraction method, 500 microL acetone (disperser solvent) containing 10.0 microL chlorobenzene (extraction solvent) and 50 microL acetic anhydride (derivatization reagent) was rapidly injected by syringe in 5.00 mL aqueous sample containing CPs (analytes) and K(2)CO(3) (0.5%, w/v). Within a few seconds the analytes derivatized and extracted at the same time. After centrifugation, 0.50 microL of sedimented phase containing enriched analytes was determined by GC-ECD. Some effective parameters on derivatization and extraction, such as extraction and disperser solvent type and their volume, amount of derivatization reagent, derivatization and extraction time, salt addition and amount of K(2)CO(3) were studied and optimized. Under the optimum conditions, enrichment factors and recoveries are in the range of 287-906 and 28.7-90.6%, respectively. The calibration graphs are linear in the range of 0.02-400 microg L(-1) and limit of detections (LODs) are in the range of 0.010-2.0 microg L(-1). The relative standard deviations (RSDs, for 200 microg L(-1) of MCPs, 100 microg L(-1) of DCPs, 4.00 microg L(-1) of TCPs, 2.00 microg L(-1) of TeCPs and PCP in water) with and without using internal standard are in the range of 0.6-4.7% (n=7) and 1.7-7.1% (n=7), respectively. The relative recoveries of well, tap and river water samples which have been spiked with different levels of CPs are 91.6-104.7, 80.8-117.9 and 83.3-101.3%, respectively. The obtained results show that simultaneous DLLME and derivatization combined with GC-ECD is a fast simple method for the determination of CPs in water samples.  相似文献   

6.
Wang  Xia  Xu  Qing-Cai  Cheng  Chuan-Ge  Zhao  Ru-Song 《Chromatographia》2012,75(17):1081-1085

In this paper, a novel mixed ionic liquids-dispersive liquid–liquid microextraction method was developed for rapid enrichment and determination of environmental pollutants in water samples. In this method, two kinds of ionic liquids, hydrophobic ionic liquid and hydrophilic ionic liquid, were used as extraction solvent and disperser solvent, respectively. DDT and its metabolites were used as model analytes and high-performance liquid chromatography with ultraviolet detector for the analysis. Factors that may affect the extraction recoveries, such as type and volume of extraction solvent (hydrophobic ionic liquid) and disperser solvent (hydrophilic ionic liquid), extraction time, sample pH and ionic strength, were investigated and optimized. Under the optimum conditions, the linear range was 1–100 μg L−1, limits of detection could reach 0.21–0.49 μg L−1, and relative standard deviation was 6.01–8.48 % (n = 7) for the analytes. Satisfactory results were achieved when the method was applied to analyze the target pollutants in environmental water samples with spiked recoveries over the range of 85.7–106.8 %.

  相似文献   

7.
Simultaneous derivatization and dispersive liquid–liquid microextraction technique for gas chromatographic determination of fatty acids in water samples is presented. One hundred microlitre of ethanol:pyridine (4:1) were added to 4 mL aqueous sample. Then a solution containing 0.960 mL of acetone (disperser solvent), 10 μL of carbon tetrachloride (extraction solvent) and 30 μL of ethyl chloroformate (derivatization reagent) were rapidly injected into the aqueous sample. After centrifugation, 1 μL sedimented phase with the analytes was analyzed by gas chromatography. The effects of extraction solvent type, derivatization, extraction, and disperser solvents volume, extraction time were investigated. The calibration graphs were linear up to 10 mg L?1 for azelaic acid (R 2 = 0.998) and up to 1 mg L?1 for palmitic and stearic acids (R 2 = 0.997). The detection limits were 14.5, 0.67 and 1.06 μg L?1 for azelaic, palmitic, and stearic acids, respectively. Repeatabilities of the results were acceptable with relative standard deviations (RSD) up to 13%. A possibility to apply the proposed method for fatty acids determination in tap, lake, sea, and river water was demonstrated.  相似文献   

8.
The authors performed ionic liquid-based microwave-assisted liquid-liquid microextraction(IL-based MALLME) coupled with high performance liquid chromatographic separation for the determination of 6 sulfonamides (SAs) from animal oils. The target analytes were extracted from animal oil samples with sodium hydroxide solution containing 1-butyl-3-methylimidazolium tetrafluoroborateand as the extraction solvent under microwave irradiation. The experimental parameters of the IL-based MALLME, including types of ILs, volume of IL, amount of ion-pairing agent(NH4PF6), pH value of sample solution, and extraction temperature and time were evaluated. The limits of detection and quantification obtained were in a range of 0.4―0.5 μg/kg and a range of 1.2―1.8 μg/kg, respectively. The accuracy of the method was evaluated by analyzing five spiked animal oil samples at two fortified levels(5 and 50 μg/kg), and the recoveries of SAs varied from 81.4% to 114.5% with relative standard deviations ranging from 0.8% to 9.0%.  相似文献   

9.
A simultaneous derivatization/air‐assisted liquid–liquid microextraction technique has been developed for the sample pretreatment of some parabens in aqueous samples. The analytes were derivatized and extracted simultaneously by a fast reaction/extraction with butylchloroformate (derivatization agent/extraction solvent) from the aqueous samples and then analyzed by GC with flame ionization detection. The effect of catalyst type and volume, derivatization agent/extraction solvent volume, ionic strength of aqueous solution, pH, numbers of extraction, aqueous sample volume, etc. on the method efficiency was investigated. Calibration graphs were linear in the range of 2–5000 μg/L with squared correlation coefficients >0.990. Enhancement factors and enrichment factors ranged from 1535 to 1941 and 268 to 343, respectively. Detection limits were obtained in the range of 0.41–0.62 μg/L. The RSDs for the extraction and determination of 250 μg/L of each paraben were <4.9% (n = 6). In this method, the derivatization agent and extraction solvent were the same and there is no need for a dispersive solvent, which is common in a traditional dispersive liquid–liquid microextraction technique. Furthermore, the sample preparation time is very short.  相似文献   

10.
A new approach for the development of a dispersive liquid–liquid microextraction followed by GC with flame ionization detection was proposed for the determination of phthalate esters and di‐(2‐ethylhexyl) adipate in aqueous samples. In the proposed method, solid and liquid phases were used as the disperser and extractant, respectively, providing a simple and fast mode for the extraction of the analytes into a small volume of an organic solvent. In this method, microliter levels of an extraction solvent was added onto a sugar cube and it was transferred into the aqueous phase containing the analytes. By manual shaking, the sugar was dissolved and the extractant was released into the aqueous phase as very tiny droplets to provide a cloudy solution. Under optimized conditions, the proposed method showed good precision (RSD less than 5.2%), high enrichment factors (266–556), and low LODs (0.09–0.25 μg/L). The method was successfully applied for the determination of the target analytes in different samples, and good recoveries (71–103%) were achieved for the spiked samples. No need for a disperser solvent and higher enrichment factors compared with conventional dispersive liquid–liquid microextraction and low cost and short sample preparation time are other advantages of the method.  相似文献   

11.
A new preconcetration method of dispersive liquid-liquid microextraction (DLLME) was developed for simultaneous preconcentration of samarium, europium, gadolinium and dysprosium. DLLME technique was successfully used as a sample preparation method. In this preconcentration method, an appropriate mixture of extraction solvent, disperser solvent was injected rapidly into an aqueous solution containing Sm, Eu, Gd and Dy after complex formation using chelating reagent of the 1-(2-pyridylazo)-2-naphthol (PAN). After phase separation, 0.5 mL of the settled phase containing enriched analytes was determined by inductively coupled plasma optical emission spectrometry (ICP-OES). The main factors affected the preconcentration of Sm, Eu, Gd and Dy were extraction and dispersive solvent type and their volume, extraction time, volume of chelating agent (PAN), centrifuge speed and drying temperature of the samples. Under the best operating condition simultaneous preconcentration factors of 80, 100, 103 and 78 were obtained for Sm, Eu, Gd and Dy, respectively.  相似文献   

12.
Dispersive liquid-liquid microextraction (DLLME) coupled with gas chromatography-mass spectrometry (GC-MS) was evaluated for the simultaneous determination of five chlorophenols and seven haloanisoles in wines and cork stoppers. Parameters, such as the nature and volume of the extracting and disperser solvents, extraction time, salt addition, centrifugation time and sample volume or mass, affecting the DLLME were carefully optimized to extract and preconcentrate chlorophenols, in the form of their acetylated derivatives, and haloanisoles. In this extraction method, 1mL of acetone (disperser solvent) containing 30μL of carbon tetrachloride (extraction solvent) was rapidly injected by a syringe into 5mL of sample solution containing 200μL of acetic anhydride (derivatizing reagent) and 0.5mL of phosphate buffer solution, thereby forming a cloudy solution. After extraction, phase separation was performed by centrifugation, and a volume of 4μL of the sedimented phase was analyzed by GC-MS. The wine samples were directly used for the DLLME extraction (red wines required a 1:1 dilution with water). For cork samples, the target analytes were first extracted with pentane, the solvent was evaporated and the residue reconstituted with acetone before DLLME. The use of an internal standard (2,4-dibromoanisole) notably improved the repeatability of the procedure. Under the optimized conditions, detection limits ranged from 0.004 to 0.108ngmL(-1) in wine samples (24-220pgg(-1) in corks), depending on the compound and the sample analyzed. The enrichment factors for haloanisoles were in the 380-700-fold range.  相似文献   

13.
Dispersive liquid–liquid microextraction in combination with an in situ derivatization is suggested for methyltin compound sampling and preconcentration from water solutions. The derivatization was carried out with sodium tetraethylborate at pH 3. The effects of extraction and disperser solvents type, volume, and extraction time on the extraction efficiency were investigated. 1,2‐Dichlorobenzene was used as an extraction solvent and ethanol was used as a disperser solvent. The calibration graphs for all the analytes were linear up to 2 μg (Sn) L?1, correlation coefficients were 0.998–0.999, LODs were 0.13, 0.05, and 0.06 ng (Sn) L?1 for trimethyltin, DMT, and monomethyltin, respectively. Repeatabilities of the results were acceptable with RSDs up to 12.1%. A possibility to apply the proposed method for methyltin compound determination in water samples was demonstrated.  相似文献   

14.
This paper described a novel approach for the determination of bisphenol A by dispersive liquid‐phase microextraction with in situ acetylation prior to GC‐MS. In this derivatization/extraction method, 500 μL acetone (disperser solvent) containing 30.0 μL chlorobenzene (extraction solvent) and 30.0 μL acetic anhydride (derivatization reagent) was rapidly injected into 5.00 mL aqueous sample containing bisphenol A and K2CO3 (0.5% w/v). Within a few seconds the analyte was derivatized and extracted at the same time. After centrifugation, 1.0 μL of sedimented phase containing enriched analyte was determined by GC‐MS. Some important parameters, such as type and volume of extraction and disperser solvent, volume of acetic anhydride, derivatization and extraction time, amount of K2CO3, and salt addition were studied and optimized. Under the optimum conditions, the LOD and the LOQ were 0.01, 0.1 μg/L, respectively. The experimental results indicated that there was linearity over the range 0.1–50 μg/L with coefficient of correlation 0.9997, and good reproducibility with RSD 3.8% (n = 5). The proposed method has been applied for the analysis of drinking water samples, and satisfactory results were achieved.  相似文献   

15.
A simple analytical procedure based on single-drop microextraction combined with in-syringe derivatization and GC-MS was developed for determination of some phenolic acids in fruits and fruit juices. Cinnamic acid, o-coumaric acid, caffeic acid, and p-hydroxybenzoic acid were used as model compounds. The analytes were extracted from a 3-mL sample solution using 2.5 microL of hexyl acetate. The extracted phenolic acids were derivatized inside the syringe barrel using 0.7 microL of N,O-bis(trimethylsilyl)acetamide before injection into the GC-MS. The influence of derivatization conditions on the yield of in-syringe silylation was studied. Experimental SDME parameters such as selection of organic solvent, solvent volume, extraction time, extraction temperature, pH, and ionic strength of the solution on the extraction performance were studied. The method provided fairly good precision for all compounds (2.4-11.9%). Detection limits were found to be between 0.6 and 164 ng/mL within an extraction time of 20 min in the GC-MS full scan mode.  相似文献   

16.
An easy, quick, and green method, microwave‐assisted liquid–liquid microextraction based on solidification of ionic liquid, was first developed and applied to the extraction of sulfonamides in environmental water samples. 1‐Ethy‐3‐methylimidazolium hexafluorophosphate, which is a solid‐state ionic liquid at room temperature, was used as extraction solvent in the present method. After microwave irradiation for 90 s, the solid‐state ionic liquid was melted into liquid phase and used to finish the extraction of the analytes. The ionic liquid and sample matrix can be separated by freezing and centrifuging. Several experimental parameters, including amount of extraction solvent, microwave power and irradiation time, pH of sample solution, and ionic strength, were investigated and optimized. Under the optimum experimental conditions, good linearity was observed in the range of 2.00–400.00 μg/L with the correlation coefficients ranging from 0.9995 to 0.9999. The limits of detection for sulfathiazole, sulfachlorpyridazine, sulfamethoxazole, and sulfaphenazole were 0.39, 0.33, 0.62, and 0.85 μg/L, respectively. When the present method was applied to the analysis of environmental water samples, the recoveries of the analytes ranged from 75.09 to 115.78% and relative standard deviations were lower than 11.89%.  相似文献   

17.
A stereospecific gas chromatography-mass spectrometry analysis method for amphetamine-type stimulants in human urine was recently developed. For maximum efficiency, liquid-liquid extraction and chiral derivatization of the analytes using (R)-(-)-alpha-methoxy-alpha-(trifluoromethyl)phenylacetyl chloride were performed simultaneously. The effects of (1) use of saturated sodium chloride in 2.0 m sodium hydroxide, (2) extraction solvent volume, (3) percentage of triethylamine, (4) derivatization reagent volume, (5) sample mixing time, (6) incubation temperature and (7) incubation time on method sensitivity and variability were assessed using a two-level, eight-run Plackett-Burman design followed by a fold-over design. The use of saturated sodium chloride solution and the derivatization reagent volume were significant factors (ANOVA, p < 0.01). The saturated sodium chloride solution decreased sensitivity whereas an increased volume of derivatization reagent increased sensitivity. Calibration curves for all analytes were linear between 5 and 500 microg/L, with correlation coefficients of >0.99. Detection limits were 相似文献   

18.
Ren R  Wang Y  Zhang R  Gao S  Zhang H  Yu A 《Talanta》2011,83(5):6259-1400
A new method was developed for the determination of monolinuron, propazine, linuron, and prebane in environmental water samples. The solvent (ionic liquid) impregnated resin (IL-SIR)-based extraction coupled with dynamic ultrasonic desorption (DUSD) was applied to the separation and concentration of the analytes. The high performance liquid chromatography (HPLC) was applied to the determination of the analytes. The ionic liquid [C6MIM][PF6] was immobilized on Diaion HP20 resin by immersing the resin in ethanol solution containing [C6MIM][PF6]. The effect of extraction parameters, including pH value of sample solution, salt concentration in sample and extraction time, and elution conditions, including the concentration of ethanol in elution solvent, the flow rate of elution solvent and the ultrasonic power, were examined and optimized. The limits of detection and quantification for the analytes were in the range of 0.15-0.29 μg L−1 and 0.51-0.98 μg L−1, respectively. Some environmental water samples were analyzed and the analytical results were satisfactory.  相似文献   

19.
Yazdi AS  Razavi N  Yazdinejad SR 《Talanta》2008,75(5):1293-1299
Dispersive liquid–liquid microextraction (DLLME) coupled with gas chromatography–flame ionization detection (GC–FID) was applied for the determination of two tricyclic antidepressant drugs (TCAs), amitriptyline and nortriptyline, from water samples. This method is a very simple and rapid method for the extraction and preconcentration of these drugs from environmental sample solutions. In this method, the appropriate mixture of extraction solvent (18 μL Carbon tetrachloride) and disperser solvent (1 mL methanol) are injected rapidly into the aqueous sample (5.0 mL) by syringe. Therefore, cloudy solution is formed. In fact, it is consisted of fine particles of extraction solvent which is dispersed entirely into aqueous phase. The mixture was centrifuged and the extraction solvent is sedimented on the bottom of the conical test tube. 2.0 μL of the sedimented phase is injected into the GC for separation and determination of TCAs. Some important parameters, such as kind of extraction and disperser solvent and volume of them, extraction time, pH and ionic strength of the aqueous feed solution were optimized. Under the optimal conditions, the enrichment factors and extraction recoveries were between 740.04–1000.25 and 54.76–74.02%, respectively. The linear range was (0.005–16 μg mL−1) and limits of detection were between 0.005 and 0.01 μg mL−1 for each of the analytes. The relative standard deviations (R.S.D.) for 4 μg mL−1 of TCAs in water were in the range of 5.6–6.4 (n = 6). The performance of the proposed technique was evaluated for determination of TCAs in blood plasma.  相似文献   

20.
Xu X  Zhao X  Zhang Y  Li D  Su R  Yang Q  Li X  Zhang H  Zhang H  Wang Z 《Journal of separation science》2011,34(12):1455-1462
A new microwave-accelerated derivatization method was developed for rapid determination of 13 natural sex hormones in feeds. Sex hormones were isolated from the sample matrix by ultrasonic extraction, followed by solid-phase extraction, derivatized under microwave irradiation, and then analyzed directly by gas chromatography-mass spectrometry (GC-MS) in selective ion monitoring (SIM) mode. The key parameters affecting derivatization efficiency, including microwave irradiation time, microwave power, and reaction solvent were studied. Under microwave power of 360 W and microwave irradiation for 3 min, 13 natural sex hormones were simultaneously derivatized using heptafluorobutyric acid anhydride (HFBA) as derivatization reagent. This method was applied to the determination of 13 natural sex hormones in different feed samples, and the obtained results were compared with those obtained by the traditional thermal derivatization. The recoveries from 58.1 to 111% were obtained at sex hormone concentrations of 10-300 μg/kg with RSDs ≤12.0%. The results showed that the proposed method was fast, simple, efficient and can be applied to the determination of 13 natural sex hormones in different feed samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号