首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A summary of recent researches on nuclear dynamics with realistic microscopic quantum approaches is presented. The Balian-Vénéroni variational principle is used to derive the time-dependent Hartree-Fock (TDHF) equation describing the dynamics at the mean-field level, as well as an extension including small-amplitude quantum fluctuations which is equivalent to the time-dependent random-phase approximation (TDRPA). Such formalisms as well as their practical implementation in the nuclear physics framework with modern three-dimensional codes are discussed. Recent applications to nuclear dynamics, from collective vibrations to heavy-ion collisions are presented. Particular attention is devoted to the interplay between collective motions and internal degrees of freedom. For instance, the harmonic nature of collective vibrations is questioned. Nuclei are also known to exhibit superfluidity due to pairing residual interaction. Extensions of the theoretical approach to study such pairing vibrations are now available. Large amplitude collective motions are investigated in the framework of heavy-ion collisions leading, for instance, to the formation of a compound system. How fusion is affected by the internal structure of the collision partners, such as their deformation, is discussed. Other mechanisms in competition with fusion, and responsible for the formation of fragments which differ from the entrance channel (transfer reactions, deep-inelastic collisions, and quasi-fission) are investigated. Finally, studies of actinide collisions forming, during very short times of few zeptoseconds, the heaviest nuclear systems available on Earth, are presented.  相似文献   

2.
We present a quantum algorithm which simulates the quantum kicked rotator model exponentially faster than classical algorithms. This shows that important physical problems of quantum chaos, localization, and Anderson transition can be modeled efficiently on a quantum computer. We also show that a similar algorithm simulates efficiently classical chaos in certain area-preserving maps.  相似文献   

3.
A path-integral Car-Parrinello molecular dynamics simulation of liquid water and ice is performed. It is found that the inclusion of nuclear quantum effects systematically improves the agreement of first-principles simulations of liquid water with experiment. In addition, the proton momentum distribution is computed utilizing a recently developed open path-integral molecular dynamics methodology. It is shown that these results are in good agreement with experimental data.  相似文献   

4.
We study a quantum network extending in one dimension (chain of square loops connected at one vertex) made up of quantum wires with Rashba spin-orbit coupling. We show that the Rashba effect may give rise to an electron localization phenomenon similar to the one induced by magnetic field. This localization effect can be attributed to the spin precession due to the Rashba effect. We present results both for the spectral properties of the infinite chain and for linear transport through a finite-size chain connected to leads. Furthermore, we study the effect of disorder on the transport properties of this network.  相似文献   

5.
The field nowadays called “many-body quantum chaos” was started in 1939 with the article by I.I. Gurevich studying the regularities of nuclear spectra. The field has been extensively developed recently, both mathematically and in application to mesoscopic systems and quantum fields. We argue that nuclear physics and the theory of quantum chaos are mutually beneficial. Many ideas of quantum chaos grew up from the factual material of nuclear physics; this enrichment still continues to take place. On the other hand, many phenomena in nuclear structure and reactions, as well as the general problem of statistical physics of finite strongly interacting systems, can be understood much deeper with the help of ideas and methods borrowed from the field of quantum chaos. A brief review of the selected topics related to the recent development is presented.  相似文献   

6.
7.
8.
Quantum relaxation is studied in coupled quantum baker's maps. The classical systems are exactly solvable Kolmogorov systems, for which the exponential decay to equilibrium is known. They model the fundamental processes of transport in classically chaotic phase space. The quantum systems, in the absence of global symmetry, show a marked saturation in the level of transport, as the suppression of diffusion in the quantum kicked rotor, and eigenfunction localization in the position basis. In the presence of a global symmetry we study another model that has classically an identical decay to equilibrium, but-quantally shows resonant transport, no saturation, and large fluctuations around equilibrium. We generalize the quantization to finite multibaker maps. As a byproduct we introduce some simple models of quantal tunneling between classically chaotic regions of phase space.  相似文献   

9.
Storchak  V.  Brewer  J. H.  Morris  G. D. 《Hyperfine Interactions》1996,97(1):323-345
We review our recent study of atomic muonium ( +e or Mu, a light isotope of the hydrogen atom) diffusion in the simplest solids-van der Waals cryocrystals. We give experimental evidence of the quantum-mechanical nature of the Mu diffusion in these solids. The results are compared with the current theories of quantum diffusion in insulators. In solid nitrogen bothT 7 andT –7 temperature dependences of the Mu hop rate are observed directly for the first time, which is taken as a confirmation of a two-phonon scattering mechanism. In solid xenon and krypton, by contrast, the one-phonon interaction is dominant in the whole temperature range under investigation due to extremely low values of the Debye temperatures. Particular attention is dedicated to processes of inhomogeneous quantum diffusion and Mu localization. It is shown that at low temperatures static crystal disorder results in an inhomogeneity of the Mu quantum diffusion which turns out to be inconsistent with diffusion models using a single correlation time c . Conventional trapping mechanisms are shown to be ineffective at low temperatures in insulators. The localization effects in Mu quantum diffusion are studied in detail in solid Kr. In all the cryocrystals studied muonium atom turns out to be localized at low temperatures.  相似文献   

10.
11.
The quantum localization of chaotically diffusive classical motion is reviewed, using the kicked rotator as a simple but instructive example. The specific quantum steady state, which results from statistical relaxation in the discrete spectrum, is described in some detail. A new phenomenological theory of quantum dynamical relaxation is presented and compared with the previously existing theory.  相似文献   

12.
13.
We investigate the effects of interface localization due to microroughness in a sample presenting a quantum well and a quantum wire. The magnetoshift of the emission lines measured at different temperatures are analysed using a model where the average effect of the microroughness is represented by a Gaussian defect. We obtain a quantitative estimate of the exciton localization due to the microroughness. As the temperature increases the excitons are released from the weak localized defects. Time-resolved luminescence results corroborate this interpretation.  相似文献   

14.
It has been suggested that chaotic motion inside the nucleus may significantly limit the accuracy with which nuclear masses can be calculated. Using a power spectrum analysis we show that the inclusion of additional physical contributions in mass calculations, through many-body interactions or local information, removes the chaotic signal in the discrepancies between calculated and measured masses. Furthermore, a systematic application of global mass formulas and of a set of relationships among neighboring nuclei to more than 2000 nuclear masses allows one to set an unambiguous upper bound for the average errors in calculated masses, which turn out to be almost an order of magnitude smaller than estimated chaotic components.  相似文献   

15.
The direct interaction of nuclei with superintense laser fields is studied. We show that present and upcoming high-frequency laser facilities, especially together with a moderate acceleration of the target nuclei to match photon and transition frequency, do allow for resonant laser-nucleus interaction. These direct interactions may be utilized for the model-independent optical measurement of nuclear properties such as the transition frequency and the dipole moment, thus opening the field of nuclear quantum optics. As an ultimate goal, one may hope that direct laser-nucleus interactions could become a versatile tool to enhance preparation, control, and detection in nuclear physics.  相似文献   

16.
We show that by illuminating an InGaAs/GaAs self-assembled quantum dot with circularly polarized light, the nuclei of atoms constituting the dot can be driven into a bistable regime, in which either a thresholdlike enhancement or reduction of the local nuclear field by up to 3 T can be generated by varying the pumping intensity. The excitation power threshold for such a nuclear spin "switch" is found to depend on both the external magnetic and electric fields. The switch is shown to arise from the strong feedback of the nuclear spin polarization on the dynamics of the spin transfer from electrons to the nuclei of the dot.  相似文献   

17.
The theory of the insulating state discriminates between insulators and metals by means of a localization tensor, which is finite in insulators and divergent in metals. In absence of time-reversal symmetry, this same tensor acquires an off-diagonal imaginary part, proportional to the dc transverse conductivity, leading to quantization of the latter in two-dimensional systems. I provide evidence that electron localization--in the above sense--is the common cause for both vanishing of the dc longitudinal conductivity and quantization of the transverse one in quantum Hall fluids.  相似文献   

18.
19.
20.
This paper introduces the concepts of asymptotic localization and separation, and shows that quantum mechanical states exist which are asymptotically localizable and separable; these are states with finite and disjoint momentum ranges respectively. All this applies whether the quantum particle concerned is free or is in a potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号