首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We study the transition between laminar and turbulent states in a Galerkin representation of a parallel shear flow, where a stable laminar flow and a transient turbulent flow state coexist. The regions of initial conditions where the lifetimes show strong fluctuations and a sensitive dependence on initial conditions are separated from the ones with a smooth variation of lifetimes by an object in phase space which we call the "edge of chaos." We describe techniques to identify and follow the edge, and our results indicate that the edge is a surface. For low Reynolds numbers we find that the surface coincides with the stable manifold of a periodic orbit, whereas at higher Reynolds numbers it is the stable set of a higher-dimensional chaotic object.  相似文献   

2.

The partial quenching structure of turbulent diffusion flames in a turbulent mixing layer is investigated by the method of flame hole dynamics as an effort to develop a prediction model for the turbulent flame lift off. The essence of the flame hole dynamics is derivation of the random walk mapping, from the flame-edge theory, which governs expansion or contraction of the quenching holes initially created by the local quenching events. The numerical simulation for the flame hole dynamics is carried out in two stages. First, a direct numerical simulation is performed for a constant-density fuel–air channel mixing layer to obtain the background turbulent flow and mixing fields, from which a time series of two-dimensional scalar-dissipation-rate array is extracted. Subsequently, a Lagrangian simulation of the flame hole random walk mapping, projected to the scalar dissipation rate array, yields a temporally evolving turbulent extinction process and its statistics on partial quenching characteristics. In particular, the probability of encountering the reacting state, while conditioned with the instantaneous scalar dissipation rate, is examined to reveal that the conditional probability has a sharp transition across the crossover scalar dissipation rate, at which the flame edge changes its direction of propagation. This statistical characteristic implies that the flame edge propagation instead of the local quenching event is the main mechanism controlling the partial quenching events in turbulent flames. In addition, the conditional probability can be approximated by a heavyside function across the crossover scalar dissipation rate.  相似文献   

3.
The statistics of the quiet times between successive turbulent flux bursts measured at the edge of the JET tokamak and the W7-AS and TJ-II stellarators are analyzed in search for evidence of self-organized critical behavior. The results obtained are consistent with what would be expected in the situation where the underlying plasma is indeed in a near critical state.  相似文献   

4.
Far field noise data indicated that for practical upper surface blown flap configurations, the noise radiated below the flap is dominated by the noise generated in the vicinity of the trailing edge. The sound field caused by turbulent mixing in the trailing edge wake is investigated experimentally and theoretically. Hot wire measurements were made downstream of the trailing edge to determine the gross turbulent mixing characteristics of the flow. This information is used as input to a theoretical analysis of the sound field. Favorable agreement is found between predicted and measured far field noise directivity at various frequencies and noise power spectra in various directions.  相似文献   

5.
Intermittency effects and the associated multiscaling spectrum of exponents are investigated for impurities advection in tokamak edge plasmas. The two-dimensional Hasagawa-Wakatani model of resistive drift-wave turbulence is used as a paradigm to describe edge tokamak turbulence. Impurities are considered as a passive scalar advected by the plasma turbulent flow. The use of the extended self-similarity technique shows that the structure function relative scaling exponent of impurity density and vorticity follows the She-Leveque model. This confirms the intermittent character of the impurities advection in the turbulent plasma flow and suggests that impurities are advected by vorticity filaments.  相似文献   

6.
Noise due to turbulent flow past a trailing edge   总被引:1,自引:0,他引:1  
A theoretical method [I] for calculating far field noise from an airfoil in an incident turbulent flow is extended to apply to the case of noise produced by turbulent flow past a trailing edge, and some minor points of the theory in reference [1] are clarified. For the trailing edge noise, the convecting surface pressure spectrum upstream of the trailing edge is taken to be the appropriate input. The noise is regarded as generated almost totally by the induced surface dipoles near the trailing edge and thus equal, but anticorrelated, noise is radiated into the regions above and below the airfoil wake, respectively. The basic assumption of the analysis, from which these concepts of appropriate input and dominance of dipole sources follow, is that the turbulence remains stationary in the statistical sense as it moves past the trailing edge. The results show that such trailing edge noise often is quite small, compared say to that produced by typical oncoming turbulence levels of one percent, but that it might be appreciable for an airfoil with a flow separation, or for a blown flap.  相似文献   

7.
Based on data sets from previous experimental studies, the tool of symbolic regression is applied to find empirical models that describe the noise generation at porous airfoils. Both the self noise from the interaction of a turbulent boundary layer with the trailing edge of an porous airfoil and the noise generated at the leading edge due to turbulent inflow are considered. Following a dimensional analysis, models are built for trailing edge noise and leading edge noise in terms of four and six dimensionless quantities, respectively. Models of different accuracy and complexity are proposed and discussed. For the trailing edge noise case, a general dependency of the sound power on the fifth power of the flow velocity was found and the frequency spectrum is controlled by the flow resistivity of the porous material. Leading edge noise power is proportional to the square of the turbulence intensity and shows a dependency on the fifth to sixth power of the flow velocity, while the spectrum is governed by the flow resistivity and the integral length scale of the incoming turbulence.  相似文献   

8.
The Large Eddy Simulation (LES) / Conditional Moment Closure (CMC) model with detailed chemistry is used for modelling spark ignition and flame propagation in a turbulent methane jet in ambient air. Two centerline and one off-axis ignition locations are simulated. We focus on predicting the flame kernel formation, flame edge propagation and stabilization. The current LES/CMC computations capture the three stages reasonably well compared to available experimental data. Regarding the formation of flame kernel, it is found that the convection dominates the propagation of its downstream edge. The simulated initial downstream and radial flame propagation compare well with OH-PLIF images from the experiment. Additionally, when the spark is deposited at off-centerline locations, the flame first propagates downstream and then back upstream from the other side of the stoichiometric iso-surface. At the leading edge location, the chemical source term is larger than others in magnitude, indicating its role in the flame propagation. The time evolution of flame edge position and the final lift-off height are compared with measurements and generally good agreement is observed. The conditional quantities at the stabilization point reflect a balance between chemistry and micro-mixing. This investigation, which focused on model validation for various stages of spark ignition of a turbulent lifted jet flame through comparison with measurements, demonstrates that turbulent edge flame propagation in non-premixed systems can be reasonably well captured by LES/CMC.  相似文献   

9.
Rare backflow (negative wall-shear stress) events have recently been found and quantified in the near-wall region of canonical wall-bounded turbulent flows. Although their existence and correlation with large-scale events have been established beyond numerical and measurement technique uncertainties, their occurrence at numerically high Reynolds numbers is still rare (less than 1 per thousand and 1 per million at the wall and beyond the viscous sublayer, respectively). To better quantify these rare events, the turbulent boundary layer developing over the suction side of a wing section, experiencing an increasing adverse pressure gradient (APG) without separation along its chord c, is considered in the present work. We find that the backflow level of 0.06% documented in turbulent channels and zero-pressure-gradient (ZPG) turbulent boundary layers is already exceeded on the suction side for x/c > 0.3, at friction Reynolds numbers three times lower, while close to the trailing edge the backflow level reaches 30%. Conditional analysis of extreme events indicates that for increasing Clauser pressure-gradient parameters (reaching β ? 35), the flow reaches a state in which the extreme events are more likely aligned with or against the freestream, and that the otherwise strong spanwise component of the wall-shear stress reduces towards the vicinity of the trailing edge. Backflow events subjected to moderate up to strong APG conditions (0.6 < β < 4.1) exhibit an average width of Δz+ ? 20, and an average lifetime of Δt+ ? 2. This directly connects with the findings by Lenaers et al., and implies that there is a connection between high-Re ZPG and strong APG conditions.  相似文献   

10.
11.
HL—1装置边缘扰动谱的初步分析   总被引:2,自引:2,他引:0  
一、引言目前许多实验都已证实托卡马克边缘扰动对等离子体的反常输运有重要的影响,由于扰动而产生的反常粒子输运流大约在玻(王母)扩散量级,而且,边缘扰动的大小、湍流频谱和波数谱的宽度对约束时间的影响很大。用探针对边缘等离子体进行湍流扰动分析已在许多托卡马克实验中进行过,用静电探针得到的电子密度扰动n和悬浮电位扰动,可以估计出扰动产生的粒子输运通量。本文主要给出了一套静电探针系统及其数据获取和频谱分析方法,  相似文献   

12.
Effects of externally imposed and self-generated poloidal flows on turbulent transport in the edge region of a tokamak are investigated using 3D nonlinear global simulations of resistive pressure-gradient-driven turbulence. Transport reduction is found to be due to synergetic changes in the fluctuation amplitude and in the dephasing of the fluctuations. A scaling of the fluctuation level and turbulent diffusivity with E x B flow shear strength is deduced from these simulations. These scalings agree with recent experimental observations on edge biasing as well as with analytical models.  相似文献   

13.
基于Hasegawa-Wakatani湍流模型,数值模拟了托卡马克边缘等离子体中漂移波湍流和相关的反常粒子输运.从等离子体动量守恒方程出发导出了不采用常规的布辛涅斯克近似的带状流方程,论证了大振幅密度扰动和湍性粒子流对激发带状流的贡献可等效地对应于低阶负粘滞阻尼效果.数值模拟表明,大振幅密度扰动的非线性大大增强了带状流饱和振幅,从而有效抑制了湍性粒子输运.研究结果阐明了托卡马克边缘等离子体大振幅密度扰动的非线性对驱动等离子体旋转、动量输运和带状流的重要性.  相似文献   

14.
基于Hasegawa-Wakatani湍流模型,数值模拟了托卡马克边缘等离子体中漂移波湍流和相关的反常粒子输运。从等离子体动量守恒方程出发导出了不采用常规的布辛涅斯克近似的带状流方程,论证了大振幅密度扰动和湍性粒子流对激发带状流的贡献可等效地对应于低阶负粘滞阻尼效果。数值模拟表明,大振幅密度扰动的非线性大大增强了带状流饱和振幅,从而有效抑制了湍性粒子输运。研究结果阐明了托卡马克边缘等离子体大振幅密度扰动的非线性对驱动等离子体旋转、动量输运和带状流的重要性。  相似文献   

15.
A tribrachial (or triple) flame is one kind of edge flame that can be encountered in nonpremixed mixing layers, consisting of a lean and a rich premixed flame wing together with a trailing diffusion flame all extending from a single point. The flame could play an important role on the characteristics of various flame behaviors including lifted flames in jets, flame propagation in two-dimensional mixing layers, and autoignition fronts. The structure of tribrachial flame suggests that the edge is located along the stoichiometric contour in a mixing layer due to the coexistence of all three different types of flames. Since the edge has a premixed nature, it has unique propagation characteristics. In this review, the propagation speed of tribrachial flames will be discussed for flames propagating in mixing layers, including the effects of concentration gradient, velocity gradient, and burnt gas expansion. Based on the tribrachial edge structure observed experimentally in laminar lifted flames in jets, the flame stabilization characteristics including liftoff height, reattachment, and blowout behaviors and their buoyancy-induced instability will be explained. Various effects on liftoff heights in both free and coflow jets including jet velocity, the Schmidt number of fuel, nozzle diameter, partial premixing of air to fuel, and inert dilution to fuel are discussed. Implications of edge flames in the modeling of turbulent nonpremixed flames and the stabilization of turbulent lifted flames in jets are covered.  相似文献   

16.
湍流大气中高斯谢尔光束的波前位错   总被引:12,自引:12,他引:0  
张逸新  陶纯堪 《光子学报》2005,34(12):1841-1844
在Rytov近似下,通过引入短期统计平均位错位置的概念,研究了高斯谢尔光束通过近地面弱湍流大气传播时,波前圆形位错形成和位错位置与湍流大气起伏强度和传播距离等参数间的关系.基于湍流大气中平行和交叉双光束的简化近似传输模型,研究了湍流大气中传播高斯谢尔光束波前位错位置与大气湍流强度、传输距离等参数间的相关机制.在远小于光波位相起伏周期的条件下,分别得出了束径不同同轴双光束和交叉双光束传播情况下波前圆位错位置的湍流系综统计平均理论关系.所得结果表明,同轴平行光束干涉和交叉光束干涉所产生的光束波前位错受大气湍流强度、传输距离等参数调制的规律是不同的.  相似文献   

17.
18.
The first measurements of turbulent stresses and flows inside the separatrix of a tokamak H-mode plasma are reported, using a reciprocating multitip Langmuir probe at the DIII-D tokamak. A strong co-current rotation layer at the separatrix is found to precede intrinsic rotation development in the core. The measured fluid turbulent stresses transport toroidal momentum outward against the velocity gradient and thus try to sustain the edge layer. However, large kinetic stresses must exist to explain the net inward momentum transport leading to co-current core plasma rotation. The importance of such kinetic stresses is corroborated by the success of a simple orbit loss model, representing a purely kinetic mechanism, in the prediction of features of the edge corotation layer.  相似文献   

19.
Radial propagation of electrostatic fluctuations in the edge plasma of Sino-United Spherical Tokamak (SUNIST) has been measured using Langmuir probes. The propagation characteristics of the floating potential fluctuations are analysed by the two-point correlation technique. The results show radially outward propagation of the turbulent fluctuations at all measured radial positions. The power-average wavenumber profile is approximately constant in plasma edge region and suddenly increases to the limiter. These results are in good agreement with the model predictions proposed by Mattor which suggests that the drift wave propagation may be a source of edge turbulence.  相似文献   

20.
The problem of a compressible gas flows over a flat plate with the velocity-slip and temperature-jump boundary conditions are being studied. The standard single- shooting method is applied to obtain the exact solutions for velocity and temperature profiles when the momentum and energy equations are weakly coupled. A double-shooting method is applied if these two equations are closely coupled. If the temperature affects the velocity directly, more significant velocity slip happens at locations closer to the plate’s leading edge, and inflections on the velocity profiles appear, indicating flows may become unstable. As a consequence, the temperature-jump and velocity-slip boundary conditions may trigger earlier flow transitions from a laminar to a turbulent flow state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号