首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
We report on the synthesis of single crystals of BaFe(2)Se(3) and study their crystal and magnetic structures by means of synchrotron single-crystal x-ray and neutron powder diffraction. The crystal structure has orthorhombic symmetry and consists of double chains of FeSe(4) edge connected tetrahedra intercalated with barium. Below 240 K, long range spin-block checkerboard antiferromagnetic order is developed. The magnetic structure is similar to one observed in A(0.8)Fe(1.6)Se(2) (A = K, Rb or Cs) superconductors. The crystals exhibit a transition to the diamagnetic state with an onset transition temperature of T(c) ~ 11 K. Though we observe FeSe as an impurity phase (<0.8% mass fraction) it is not likely that the diamagnetism is attributable to the FeSe superconductor, which has T(c) ≈ 8.5 K.  相似文献   

2.
The magnetic properties and electronic structure of (K,Tl)(y)Fe(1.6)Se(2) is studied using first-principles calculations. The ground state is checkerboard antiferromagnetically coupled blocks of the minimal Fe(4) squares, with a large block-spin moment ~11.2 μ(B). The magnetic interactions could be modeled with a simple spin model involving both the inter- and intrablock, as well as the nearest-neighbor and next-nearest-neighbor couplings. The calculations also suggest a metallic ground state except for y=0.8 where a band gap ~400-550 meV opens, showing an antiferromagnetic insulator ground state for (K,Tl)(0.8)Fe(1.6)Se(2). The electronic structure of the metallic (K,Tl)(y)Fe(1.6)Se(2) is highly three dimensional with unique Fermi surface structure and topology. These features indicate that the Fe-vacancy ordering is crucial to the physical properties of (K,Tl)(y)Fe(2-x)Se(2).  相似文献   

3.
We report on a new iron selenide superconductor with a T(c) onset of 45?K and the nominal composition Li(x)(C(5)H(5)N)(y)Fe(2-z)Se(2), synthesized via intercalation of dissolved alkaline metal in anhydrous pyridine at room temperature. This superconductor exhibits a broad transition, reaching zero resistance at 10?K. Magnetization measurements reveal a superconducting shielding fraction of approximately 30%. Analogous phases intercalated with Na, K and Rb were also synthesized and characterized. The superconducting transition temperature of Li(x)(C(5)H(5)N)(y)Fe(2-z)Se(2) is clearly enhanced in comparison to those of the known superconductors FeSe(0.98) (T(c)?~?8?K) and A(x)Fe(2-y)Se(2) (T(c)?~?27-32?K) and is in close agreement with critical temperatures recently reported for Li(x)(NH(3))(y)Fe(2-z)Se(2). Post-annealing of intercalated material (Li(x)(C(5)H(5)N)(y)Fe(2-z)Se(2)) at elevated temperatures drastically enlarges the c-parameter of the unit cell (~44%) and increases the superconducting shielding fraction to nearly 100%. Our findings indicate a new synthesis route leading to possibly even higher critical temperatures for materials in this class: by intercalation of organic compounds between Fe-Se layers.  相似文献   

4.
Yu R  Zhu JX  Si Q 《Physical review letters》2011,106(18):186401
The degree of electron correlations remains a central issue in the iron-based superconductors. The parent iron pnictides are antiferromagnetic, and their bad-metal behavior has been interpreted in terms of proximity to a Mott transition. We study such a transition in multiorbital models on modulated lattices containing an ordered pattern of iron vacancies, using a slave-rotor method. We show that the ordered vacancies lead to a band narrowing, which pushes the system to the Mott insulator side. This effect is proposed to underlie the insulating behavior observed in the parent compounds of the newly discovered (K,Tl)(y)Fe(x)Se(2) superconductors.  相似文献   

5.
Mou D  Liu S  Jia X  He J  Peng Y  Zhao L  Yu L  Liu G  He S  Dong X  Zhang J  Wang H  Dong C  Fang M  Wang X  Peng Q  Wang Z  Zhang S  Yang F  Xu Z  Chen C  Zhou XJ 《Physical review letters》2011,106(10):107001
High resolution angle-resolved photoemission measurements have been carried out to study the electronic structure and superconducting gap of the (Tl0.58Rb0.42)Fe1.72Se2 superconductor with a T(c) = 32 K. The Fermi surface topology consists of two electronlike Fermi surface sheets around the Γ point which is distinct from that in all other iron-based superconductors reported so far. The Fermi surface around the M point shows a nearly isotropic superconducting gap of ~12 meV. The large Fermi surface near the Γ point also shows a nearly isotropic superconducting gap of ~15 meV, while no superconducting gap opening is clearly observed for the inner tiny Fermi surface. Our observed new Fermi surface topology and its associated superconducting gap will provide key insights and constraints into the understanding of the superconductivity mechanism in iron-based superconductors.  相似文献   

6.
The newly discovered iron-based superconductors have triggered renewed enormous research interest in the condensed matter physics community. Nuclear magnetic resonance (NMR) is a low-energy local probe for studying strongly correlated electrons, and particularly important for high-Tc superconductors. In this paper, we review NMR studies on the structural transition, antiferromagnetic order, spin fluctuations, and superconducting properties of several iron-based high-Tc superconductors, including LaFeAsOl_xFx, LaFeAsOl_x, BaFe2As2, Bal_xKxFe2As2, Cao.23Nao.67Fe2As2, BaFe2(Asl_xPx)2, Ba(Fel_xRux)2As2, Ba(Fel_xCox)2As2, Lil+xFeAs, LiFel_xCoxAs, NaFeAs, NaFel_xCoxAs, KyFe2_xSe2, and (T1,Rb)yFe2_xSe2.  相似文献   

7.
By the first-principles electronic structure calculations, we find that the ground state of the Fe-vacancies ordered TlFe(1.5)Se(2) is a quasi-two-dimensional collinear antiferromagnetic semiconductor with an energy gap of 94 meV, in agreement with experimental measurements. This antiferromagnetic order is driven by the Se-bridged antiferromagnetic superexchange interactions between Fe moments. Similarly, we find that crystals AFe(1.5)Se(2) (A=K, Rb, or Cs) are also antiferromagnetic semiconductors but with a zero-gap semiconducting state or semimetallic state nearly degenerated with the ground states. Thus, rich physical properties and phase diagrams are expected.  相似文献   

8.
The results of a 57Fe M?ssbauer spectroscopy study between 4.5 and 523.2 K and in external magnetic fields (up to 90 kOe) of semiconducting Tl0.53K0.47Fe1.64Se2 single crystals are reported. Evidence is provided for a possible phase separation into the magnetic majority and minority phases. It is demonstrated that the magnetic moments of the divalent Fe atoms located at the 16i site (space group I4/m) of the majority phase and of the minority phase are antiferromagnetically ordered, with the Néel temperature T(N) = 518.0(3.6) K. The magnetic moments at 5.0 K of 2.09(1) and 2.28(2) μ(B) in these two phases are tilted from the crystallographic c axis by 18(1)° and 32(2)°, respectively. The Debye temperature of Tl0.53K0.47Fe1.64Se2 is found to be 228(4) K.  相似文献   

9.
We have studied the low-energy spin-excitation spectrum of the single-crystalline Rb(2)Fe(4)Se(5) superconductor (T(c)=32 K) by means of inelastic neutron scattering. In the superconducting state, we observe a magnetic resonant mode centered at an energy of ?ω(res)=14 meV and at the (0.5 0.25 0.5) wave vector (unfolded Fe-sublattice notation), which differs from the ones characterizing magnetic resonant modes in other iron-based superconductors. Our finding suggests that the 245-iron selenides are unconventional superconductors with a sign-changing order parameter, in which bulk superconductivity coexists with the √5×√5 magnetic superstructure. The estimated ratios of ?ω(res)/k(B)T(c)≈5.1±0.4 and ?ω(res)/2Δ≈0.7±0.1, where Δ is the superconducting gap, indicate moderate pairing strength in this compound, similar to that in optimally doped 1111 and 122 pnictides.  相似文献   

10.
We report the synthesis, structure, and physical properties of single crystals of CePt(2)In(7). Single crystal x-ray diffraction analysis confirms the tetragonal I4/mmm structure of CePt(2)In(7) with unit cell parameters a = 4.5886(6) ?, c = 21.530(6) ? and V = 453.32(14) ?(3). The magnetic susceptibility, heat capacity, Hall effect and electrical resistivity measurements are all consistent with CePt(2)In(7) undergoing an antiferromagnetic order transition at T(N) = 5.5 K, which is field independent up to 9 T. Above T(N), the Sommerfeld coefficient of specific heat is γ ≈ 300 mJ mol(-1) K(-2), which is characteristic of an enhanced effective mass of itinerant charge carriers. The electrical resistivity is typical of heavy-fermion behavior and gives a residual resistivity ρ(0) ~ 0.2 μΩ cm, indicating good crystal quality. CePt(2)In(7) also shows moderate anisotropy of the physical properties that is comparable to structurally related CeMIn(5) (M = Co, Rh, Ir) heavy-fermion superconductors.  相似文献   

11.

Among heavy-fermion (HF) superconductors, CeCoIn 5 exhibits a record high value of T c =2.3 K at ambient pressure [1]. CeCoIn 5 belongs to a new class of HF-superconductors that crystallize in the tetragonal HoCoGa 5 -structure. This structure can be regarded as alternating layers of CeIn 3 and CoIn 2 . Bulk CeIn 3 undergoes a transition from an antiferromagnetic (AFM) state at ambient pressure ( T N =10.2 K) to a superconducting state with very low T C =0.15 K at a critical pressure p c =2.8 GPa [2] at which long range magnetic order vanishes. It is, therefore, regarded as a possible candidate for magnetically mediated superconductivity (SC). We report on measurements of the heat capacity of CeCoIn 5 at hydrostatic pressures p h 1.5 GPa. While T c increases with increasing pressure, the effective mass of the quasi-particles m eff decreases, as indicated by the ratio C / T | T c . As a working hypothesis based on theories of a nearly antiferromagnetic Fermi-liquid (NAFFL), this may be interpreted as the stabilization of the superconducting state by an increase of the characteristic spin fluctuation temperature T_{SF} (T_{SF}\propto k_F^2/m_{\rm eff}).  相似文献   

12.
The compound BaMn2As2 with the tetragonal ThCr2Si2 structure is a local-moment antiferromagnetic insulator with a Néel temperature T(N)=625 K and a large ordered moment μ=3.9μ(B)/Mn. We demonstrate that this compound can be driven metallic by partial substitution of Ba by K while retaining the same crystal and antiferromagnetic structures together with nearly the same high T(N) and large μ. Ba(1-x)K(x)Mn2As2 is thus the first metallic ThCr2Si2-type MAs-based system containing local 3d transition metal M magnetic moments, with consequences for the ongoing debate about the local-moment versus itinerant pictures of the FeAs-based superconductors and parent compounds. The Ba(1-x)K(x)Mn2As2 class of compounds also forms a bridge between the layered iron pnictides and cuprates and may be useful to test theories of high T(c) superconductivity.  相似文献   

13.
郭静  孙力玲 《物理学报》2015,64(21):217406-217406
在凝聚态物理研究中, 压力作为对物质状态调控的独立变量得到了广泛的应用. 压力对发现物质的新现象、新规律及对其形成机理的理解和对相关理论的验证起到了重要的作用, 尤其在超导电性的研究中取得了巨大的成功. 文章简要的介绍了通过利用压力手段对具有相分离结构的碱金属铁硒基超导体AxFe2-ySe2 (A=K, Rb, Tl/Rb)开展的系列研究所取得的实验结果, 以及其他一些文献中报道的在此方面的主要实验与理论研究工作, 包括压力导致的超导再进入现象和其产生的量子临界机理、其特有的反铁磁绝缘体相在该类超导体实现超导电性中的作用、化学负压力对超导电性的影响、构成该类超导体的反铁磁序与其寄居的超晶格的关系等.  相似文献   

14.
We report 75As nuclear quadrupole resonance studies on (Ca4Al2O(6-y))(Fe2As2) with T(c) = 27 K. Measurement of nuclear-spin-relaxation rate 1/T1 has revealed a significant development of two-dimensional antiferromagnetic spin fluctuations down to T(c) in association with the smallest As-Fe-As bond angle. Below T(c), the temperature dependence of 1/T1 without any trace of the coherence peak is well accounted for by a nodeless s(±)-wave multiple-gaps model. From the fact that its T(c) is comparable to T(c) = 28 K in the optimally doped LaFeAsO(1-y) in which antiferromagnetic spin fluctuations are not dominant, we remark that antiferromagnetic spin fluctuations are not a unique factor for enhancing T(c) among Fe-based superconductors, but a condition for optimizing superconductivity should be addressed from the lattice structure point of view.  相似文献   

15.
High-pressure effects on the superconducting transitions of beta-pyrochlore oxide superconductors AOs(2)O(6) (A = Cs,Rb,K) are studied by measuring resistivity under high pressures up to 10 GPa. The superconducting transition temperature T(c) first increases with increasing pressure in every compound and then exhibits a broad maximum at 7.6 K (6 GPa), 8.2 K (2 GPa), and 10 K (0.6 GPa) for A = Cs, Rb, and K, respectively. Finally, the superconductivity is suppressed completely at a critical pressure near 7 GPa and 6 GPa for A = Rb and K and probably above 10 GPa for A = Cs. Characteristic changes in the coefficient A of the T(2) term in resistivity and residual resistivity are observed, both of which are synchronized with the corresponding change in T(c).  相似文献   

16.
We report inelastic neutron scattering studies of magnetic excitations in antiferromagnetically ordered SrFe2As2 (T_{N}=200-220 K), the parent compound of the FeAs-based superconductors. At low temperatures (T=7 K), the magnetic spectrum S(Q,Planck's omega) consists of a Bragg peak at the elastic position (Planck's omega=0 meV), a spin gap (Delta< or =6.5 meV), and sharp spin-wave excitations at higher energies. Based on the observed dispersion relation, we estimate the effective magnetic exchange coupling using a Heisenberg model. On warming across T_{N}, the low-temperature spin gap rapidly closes, with weak critical scattering and spin-spin correlations in the paramagnetic state. The antiferromagnetic order in SrFe2As2 is therefore consistent with a first order phase transition, similar to the structural lattice distortion.  相似文献   

17.
Magnetic measurements of various types have played an essential role in establishing the novel normal state characteristics of high transition temperature (Tc) superconductors with Tc > 23 K. Among these materials, the highest Tc's ( 125 K) are exhibited by the layered cuprates. In this paper, the normal state magnetic susceptibilities of the cuprates are reviewed and interpreted in the context of magnetic neutron scattering and other magnetic measurements, using the La2−xMxCuO4-type and YBa2Cu3O6+x-type materials as prototypical examples. The evolution of the magnetism upon doping the insulating antiferromagnetic “parent” compounds with x = 0 to form the high temperature superconductors is described. A recurrent property which differentiates these materials from conventional superconductors is the existence of strong antiferromagnetic correlations in the metallic state on the same sublattice of the structure in which the itinerant carriers reside.  相似文献   

18.
We report a comprehensive angle-resolved photoemission spectroscopy study of the tridimensional electronic bands in the recently discovered Fe selenide superconductor (Tl,Rb)_{y}Fe_{2-x}Se_{2} (T_{c}=32 K). We determined the orbital characters and the k_{z} dependence of the low energy electronic structure by tuning the polarization and the energy of the incident photons. We observed a small 3D electron Fermi surface pocket near the Brillouin zone center and a 2D like electron Fermi surface pocket near the zone boundary. The photon energy dependence, the polarization analysis and the local-density approximation calculations suggest a significant contribution from the Se 4p_{z} and Fe 3d_{xy} orbitals to the small electron pocket. We argue that the emergence of Se 4p_{z} states might be the cause of the different magnetic properties between Fe chalcogenides and Fe pnictides.  相似文献   

19.
20.
Effects of magnetic fields (applied along the c axis) on static spin correlation were studied for the electron-doped superconductors Pr1-xLaCexCuO4 with x=0.11 (T(c)=25 K) and x=0.15 (T(c)=16 K) by neutron-scattering measurements. In the x=0.11 sample, which is located near the antiferromagnetic (AF) and superconducting phase boundary, a commensurate magnetic order develops below around T(c) at zero field. Upon applying a magnetic field up to 9 T both the magnetic intensity and the onset temperature of the order increase with the maximum field effect at approximately 5 T. In contrast, in the overdoped x=0.15 sample any static AF order is neither observed at zero field nor induced by the field up to 8.5 T. Difference and similarity of the field effect between the hole- and electron-doped high-T(c) cuprates are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号