首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is widely believed that, in contrast to its electron-doped counterparts, the hole-doped compound Ba(1-x)K(x)Fe(2)As(2) exhibits a mesoscopic phase separation of magnetism and superconductivity in the underdoped region of the phase diagram. Here, we report a combined high-resolution x-ray powder diffraction and volume-sensitive muon spin rotation study of Ba(1-x)K(x)Fe(2)As(2) showing that this paradigm does not hold true in the underdoped region of the phase diagram (0≤x≤0.25). Instead we find a microscopic coexistence of the two forms of order. A competition of magnetism and superconductivity is evident from a significant reduction of the magnetic moment and a concomitant decrease of the magnetoelastically coupled orthorhombic lattice distortion below the superconducting phase transition.  相似文献   

2.
We report Eu-local-spin magnetism and Ni-doping-induced superconductivity(SC)in a 112-type ferroarsenide system Eu(Fe_(1-x)Ni_x)As_2.The non-doped EuFeAs_2exhibits two primary magnetic transitions at ~100 and ~40 K,probably associated with a spin-density-wave(SDW)transition and an antiferromagnetic ordering in the Fe and Eu sublattices,respectively.Two additional successive transitions possibly related to Eu-spin modulations appear at 15.5 and 6.5 K.For the Ni-doped sample with x=0.04,the SDW transition disappears,and SC emerges at T_c=17.5 K.The Eu-spin ordering remains at around 40 K,followed by the possible reentrant magnetic modulations with enhanced spin canting.Consequently,SC coexists with a weak spontaneous magnetization below 6.2 K in Eu(Fe_(0.96)Ni_(0.04))As_2,which provides a complementary playground for the study of the interplay between SC and magnetism.  相似文献   

3.
We investigate the superconducting phase in the K(x)Ba(1-x)Fe2As2 122 compounds from moderate to strong hole-doping regimes. Using the functional renormalization group, we show that, while the system develops a nodeless anisotropic s(±) order parameter in the moderately doped regime, gapping out the electron pockets at strong hole doping drives the system into a nodal (cos k(x) + cos k(y))(cos k(x) - cos k(y)) d-wave superconducting state. This is in accordance with recent experimental evidence from measurements on KFe2As2 which observe a nodal order parameter in the extreme doping regime. The magnetic instability is strongly suppressed.  相似文献   

4.
We report inelastic neutron scattering measurements of the resonant spin excitations in Ba(1-x)K(x)Fe(2)As(2) over a broad range of electron band filling. The fall in the superconducting transition temperature with hole doping coincides with the magnetic excitations splitting into two incommensurate peaks because of the growing mismatch in the hole and electron Fermi surface volumes, as confirmed by a tight-binding model with s(±)-symmetry pairing. The reduction in Fermi surface nesting is accompanied by a collapse of the resonance binding energy and its spectral weight, caused by the weakening of electron-electron correlations.  相似文献   

5.
The compound BaMn2As2 with the tetragonal ThCr2Si2 structure is a local-moment antiferromagnetic insulator with a Néel temperature T(N)=625 K and a large ordered moment μ=3.9μ(B)/Mn. We demonstrate that this compound can be driven metallic by partial substitution of Ba by K while retaining the same crystal and antiferromagnetic structures together with nearly the same high T(N) and large μ. Ba(1-x)K(x)Mn2As2 is thus the first metallic ThCr2Si2-type MAs-based system containing local 3d transition metal M magnetic moments, with consequences for the ongoing debate about the local-moment versus itinerant pictures of the FeAs-based superconductors and parent compounds. The Ba(1-x)K(x)Mn2As2 class of compounds also forms a bridge between the layered iron pnictides and cuprates and may be useful to test theories of high T(c) superconductivity.  相似文献   

6.
We report detailed measurements of the temperature dependence of the lower critical field Hc1 of the FeAs-based superconductor SmFeAsO0.9F0.1 (Sm-1111) and Ba0.6K0. 4Fe2As2 (BaK-122) by global and local magnetization measurements. It is found that the obtained Hc1 for both kinds of samples show a weak temperature dependence in low temperature region. We argue that this weak T-dependence of Hc1 of Sm-1111 does not indicate a conventional s-wave state, instead it satisfies a T2 dependence up to a temperature of (0.5–0.6) Tc. In contrast, the data of Hc1(T) of BaK-122 superconductor clearly show a multigap behavior. Excellent fitting to the data can be reached with two s-wave superconducting gaps. Comparison of the absolute values of Hc1(0) between Sm-1111 and BaK-122 shows a relatively large superfluid density for the latter. This may indicate the distinction between the electron doped and hole-doped FeAs-based superconductors.  相似文献   

7.
The evolution of (75)As NMR parameters with composition and temperature was probed in the Ba(Fe(1-x)Ru(x))(2)As(2) system where Fe is replaced by isovalent Ru. While the Ru end member was found to be a conventional Fermi liquid, the composition (x = 0.5) corresponding to the highest T(c) (20 K) in this system shows an upturn in the (75)As [Formula: see text] below about 80 K, evidencing the presence of antiferromagnetic (AFM) fluctuations. These results are similar to those obtained in another system with isovalent substitution, BaFe(2)(As(1-x)P(x))(2) (Nakai et al 2010 Phys. Rev. Lett. 105 107003) and point to a possible role of AFM fluctuations in driving superconductivity.  相似文献   

8.
We have studied erbium germanosilicide (ErSiGe) Ohmic contacts on n-type Si_(1-x)Ge_x substrates with differing Ge concentrations (0≤x≤0.3).Thin layers of Ti (20 nm)/Er (20 nm) were deposited on Si_(1-x)Ge_x substrates and then post-annealed at 600°C for 60 s to form a stable ErSiGe film.The structures of the ErSiGe films and ErSiGe/Si_(1-x)Ge_x interfaces were characterized by Transmission Electron Microscopy measurements (TEM).The TEM images showed that the thicknesses of ErSiGe films and the Si_(1-x)Ge_x...  相似文献   

9.
Directional point-contact Andreev-reflection measurements in Ba(Fe(1-x)Co(x))2As2 single crystals (T(c) = 24.5 K) indicate the presence of two superconducting gaps with no line nodes on the Fermi surface. The point-contact Andreev-reflection spectra also feature additional structures related to the electron-boson interaction, from which the characteristic boson energy Ω(b)(T) is obtained, very similar to the spin-resonance energy observed in neutron scattering experiments. Both the gaps and the additional structures can be reproduced within a three-band s ± Eliashberg model by using an electron-boson spectral function peaked at Ω(0) = 12 meV ? Ω(b)(0).  相似文献   

10.
Summary Raman spectra on the CuGaS2-x Se x system (x=0, 0.5, 1.0) are described for the first time. The observed structures are assigned on the basis of the analogies with binary solid solutions. The broadening of theA 1 sulphur mode seems to indicate the effect of substitutional disorder. Paper presented at the ?V. International Conference on Ternary and Multinary Compounds?, held in Cagliari, September 14–16, 1982.  相似文献   

11.
We report bulk superconductivity (SC) in Eu(0.2)Sr(0.8)(Fe(0.86)Co(0.14))(2)As(2) single crystals by means of electrical resistivity, magnetic susceptibility and specific heat measurements with T(c) is approximately equal to 20 K and an antiferromagnetic (AFM) ordering of Eu(2+) moments at T(N) is approximately equal to 2.0 K in zero field. (75)As NMR experiments have been performed in the two external field directions (H is parallel to ab) and (H is parallel to c). (75)As-NMR spectra are analysed in terms of first-order quadrupolar interaction. Spin-lattice relaxation rates (1/T(1)) follow a T(3) law in the temperature range 4.2-15 K. There is no signature of a Hebel-Slichter coherence peak just below the SC transition, indicating a non-s-wave or s(±) type of superconductivity. In the temperature range 160-18 K 1/T(1)T follows the C/(T+θ) law reflecting 2D AFM spin fluctuations.  相似文献   

12.
13.
Ba(1-x)K(x)Fe(2)As(2) superconducting samples (x = 0, 0.2, 0.4, 0.5) were synthesized by the solid-state reaction method. In this contribution the doping effect of potassium on the lattice dynamics in this newly discovered Ba(1-x)K(x)Fe(2)As(2) superconductor has been investigated by extended X-ray absorption fine-structure spectroscopy. The analysis shows that with potassium doping an increased disorder in the iron layers is mainly related to the softening of the Fe-Fe bond. Information about the electronic structure of these materials has also been obtained by looking at the X-ray absorption near-edge structure spectra that point out the presence of holes in the Fe-3d/As-4p hybridized orbital of the BaFe(2)As(2)-based system.  相似文献   

14.
Studies of magnetization, magnetoresistance, and magnetic oscillations in semiconductor-multiferroics Eu(1-x)Ce(x)Mn2O5 (x = 0.2-0.25) (ECMO) at temperatures ranging from 5 to 350 K in magnetic fields up to 6 T are presented. It is shown that phase separation and charge carrier self-organization in the crystals give rise to a layered superstructure perpendicular to the c axis. An effect of magnetic field cycling on the superstructure, magnetization, and magnetoresistance is demonstrated. X-ray diffraction studies of ECMO demonstrating the effect of magnetic field on the superstructure are presented. The de Haas-van Alphen magnetization oscillations in high magnetic fields and the temperature-induced magnetic oscillations in a fixed magnetic field are observed at low temperatures. Below 10 K the quantum corrections to magnetization due to the weak charge carrier localization in 2D superlattice layers occur. It is shown that at all the temperatures the Eu(1-x)Ce(x)Mn2O5 magnetic state is dictated by superparamagnetism of isolated ferromagnetic domains.  相似文献   

15.
The crystal structure and magnetic properties of R2Fe17-xCrx(R=Dy,Er,0≤x≤3) compounds have been investigated by me ans of X-ray diffraction and magnetization measurements. These compounds have hexagonal Th2Ni17-type structure. The unit-cell volumes decrease with the increase of Cr concentration x. The Curie temperature Tc of the Er2Fe17-xCrx compounds increases from 320 K for x=0 to 403 K for x=1.0 and then decreases with further increase of x. The Cur ie temperat ure Tc of Dy2Fe17-xCrx compounds increases from 364 K for x=0 to 435 K for x=1.0 and then decreases with further increase of x. The saturation magnetization of these compounds shows an approximately linear decrease with the increase of x. Spin reorientation transitions occur s in Er2Fe17-xCrx(x=2.0 and 3.0).  相似文献   

16.
In a recent contribution to this journal, it was shown that the transition temperatures of optimal high-T(C) compounds obey the algebraic relation T(C0) = k(-1)(B)/?ζ, where ? is related to the mean spacing between interacting charges in the layers, ζ is the distance between interacting electronic layers, β is a universal constant and k(B) is Boltzmann's constant. The equation was derived assuming pairing based on interlayer Coulomb interactions between physically separated charges. This theory was initially validated for 31 compounds from five different high-T(C) families (within an accuracy of ±1.37 K). Herein we report the addition of Fe(1+x)Se(1-y) and Fe(1+x)Se(1-y)Te(y) (both optimized under pressure) and A(z)Fe(2-x)Se(2) (for A = K, Rb or Cs) to the growing list of Coulomb-mediated superconducting compounds in which T(C0) is determined by the above equation. Doping in these materials is accomplished through the introduction of excess Fe and/or Se deficiency, or a combination of alkali metal and Fe vacancies. Consequently, a very small number of vacancies or interstitials can induce a superconducting state with a substantial transition temperature. The confirmation of the above equation for these Se-based Fe chalcogenides increases to six the number of superconducting families for which the transition temperature can be accurately predicted.  相似文献   

17.
18.
57Fe ME spectra taken for Eux(Rh1–yFey)3B2 compounds (x=0.6, 0.75, 1.04 and y=0.02) show quadrupole doublet and a magnetically split pattern for T < Tc *. Above Tc * the spectra merge into a single quadrupole doublet. It is seen that the addition of Fe shifts the Tc corresponding to undoped compound to Tc *, Tc *>300 K for all the three samples.  相似文献   

19.
The electrical conductivity (σ) of hydrogen doped (Zr(2)Fe)(1-x)H(x) metallic glasses has been measured in the temperature range from 290 down to 5 K. The decrease of the room temperature conductivity and the increase of its temperature coefficient are explained as consequences of increased disorder due to hydrogen doping. σ(T) for (Zr(2)Fe)(1-x)H(x) metallic glasses at low temperatures decreases with the increase of temperature, forming a minimum at T(min), before it starts a monotonic increase with increasing temperature. Both the functional forms and the magnitudes of the observed σ(T) are interpreted in terms of weak localization, electron-electron interaction and spin-fluctuation effects. Our results reveal that the electron-phonon scattering rate varies with the square of temperature from low temperatures up to 100 K and changes behaviour to a linear form at higher temperatures. At low temperatures, the minimum in σ(T) is shifted to higher temperatures, which is ascribed to the increase of the screening parameter of the Coulomb interaction F* associated with the enhancement of the spin fluctuations arising from the increase of the hydrogen doping. The spin-orbit scattering rate and the electron diffusion constant are reduced by hydrogen doping.  相似文献   

20.
A detailed (31)P (I = 1/2) and (75)As (I = 3/2) NMR study on polycrystalline CeFeAs(1-x)P(x)O alloys is presented. The magnetism of CeFeAsO changes drastically upon P substitution on the As site. CeFePO is a heavy fermion system without long-range order whereas CeFeAsO exhibits an Fe 3d SDW type of ordering accompanied by a structural transition from tetragonal (TT) to orthorhombic (OT) structure. Furthermore, Ce 4f(1) orders antiferromagnetically (AFM) at low temperature. At the critical concentration where the Fe magnetism is diminished the Ce-Ce interaction changes to a ferromagnetic (FM) type of ordering. Three representative samples of the CeFeAs(1-x)P(x)O (x = 0.05, 0.3 and 0.9) series are systematically investigated. (1) For the x = 0.05 alloy a drastic change of the linewidth at 130 K indicates the AFM-SDW type of ordering of Fe and the structural change from the TT to the OT phase. The linewidth roughly measures the internal field in the ordered state and the transition is most likely first order. The small and nearly constant shift from (31)P and (75)As NMR suggests the presence of competing hyperfine interactions between the nuclear spins and the 4f and 3d ions of Ce and Fe. (2) For the x = 0.3 alloy, the evolution of the Fe-SDW type of order takes place at around 70 K corroborating the results of bulk measurement and μSR. Here we found evidence for phase separation of paramagnetic and magnetic SDW phases. (3) In contrast to the heavy fermion CeFePO for the x = 0.9 alloy a phase transition is found at 2 K. The field-dependent NMR shift gives evidence of FM ordering. Above the ordering the spin-lattice relaxation rate (31)(1/T(1)) shows unconventional, non-Korringa-like behaviour which indicates a complex interplay of Kondo and FM fluctuations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号