首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Uniform mixing of ceramic powder and graphene is of great importance for producing ceramic matrix composite. In this study, graphene nanowalls(GNWs) are directly deposited on the surface of Al_2 O_3 and Si_3 N_4 powders using chemical vapor deposition system to realize the uniform mixing. The morphology and the initial stage of the growth process are investigated. It is found that the graphitic base layer is initially formed parallel to the powder surface and is followed by the growth of graphene nanowalls perpendicular to the surface. Moreover, the lateral length of the graphene sheet could be well controlled by tuning the growth temperature. GNWs/Al_2 O_3 powder is consolidated by using sparking plasma sintering method and several physical properties are measured. Owing to the addition of GNWs, the electrical conductivity of the bulk alumina is significantly increased.  相似文献   

2.
Correlations between structural and magnetic properties for ultra-thin iron films are discussed. Some selected methods of structural and magnetic analysis are reviewed. The onset of magnetism for submonolayer Fe(110) film on W(110) is explained based on STM (scanning tunneling microscopy) imaging. Hyperfine magnetic fields in iron films sandwiched between Cr show unusual temperature behavior due to the influence of magnetic ordering in Cr. Magnetic properties of metastable iron phases on Cu and Ru are discussed, based on CEMS measurements.  相似文献   

3.
A review of the structural and magnetic properties of amorphous ferromagnetic and ferrimagnetic thin films is presented. An attempt is made to report structural information on atomic and microstructural scales, and to stress its relevance to the magnetic properties of these materials. The more obvious microstructural features of deposited films are not present in the other important type of amorphous magnetic material prepared by rapid quenching from the melt, and present opportunities for differences in structure dependent magnetic properties. In the main, three classes of amorphous magnetic films are considered. Ferromagnetic transition metal (TM) films which are metastable only at temperatures well below room temperature are discussed. Their importance lies in the fact that they clearly represent the most fundamental amorphous phase. Ferromagnetic transition metal-metalloid (TM-Me) alloys have potential applications as magnetically soft materials. These alloys are, perhaps, the most studied amorphous magnetic materials both in deposited thin film and rapidly quenched ribbon forms. Finally, amorphous rare earth-transition metal (RE-TM) films are reviewed. They exhibit a wide variety of magnetic properties encompassing both extremely low and very high coercivities and also perpendicular magnetic anisotropy. The possible application of these materials in various types of device has encouraged much detailed research into their magnetic properties. This has highlighted the importance of preparation conditions and microstructure in defining their properties.  相似文献   

4.
5.
胡玉平  平凯斌  闫志杰  杨雯  宫长伟 《物理学报》2011,60(10):107504-107504
采用基于密度泛函理论的第一性原理计算方法研究Finemet合金中析出相α-Fe(Si)的晶体结构与磁性,探讨影响立方结构α-Fe(Si)相磁性能的各个因素. 从电子自旋角度出发,分别计算分析了不同比例的Si置换α-Fe超晶格中不同位置的Fe原子后α-Fe(Si)体系的磁性能. 计算结果表明,自旋态密度是影响磁性能的关键因素. 发现Si置换α-Fe超晶格顶角处Fe原子得到的体系比取代体心位置Fe原子的体系磁性要好. 由此可以得出结论,在一定的含量范围内,随着Si含量的增加,Si出现在α-Fe超晶格中顶角位置的概率增大,α-Fe(Si)相的软磁性能提高,与实验结果相符. 本文的研究工作有助于理解Finemet合金的磁性机理. 关键词: Finemet合金 磁性能 第一性原理 态密度  相似文献   

6.
One-dimensional magnetic nanostructures have recently attracted much attention because of their intriguing properties that are not realized by their bulk or particle form. These nanostructures are potentially useful for the application to ultrahigh-density data storages, sensors and bulletproof vest. The magnetic particles in magnetic nanofibers of blend types cannot fully align along the external magnetic field because magnetic particles are arrested in solid polymer matrix. To improve the mobility of magnetic particles, we used magneto-rheological fluid (MRF), which has the good mobility and dispersibility. Superparamagnetic core/sheath composite nanofibers were obtained with MRF and poly (ethylene terephthalate) (PET) solution via a coaxial electrospinning technique. Coaxial electrospinning is suited for fabricating core/sheath nanofibers encapsulating MRF materials within a polymer sheath. The magnetic nanoparticles in MRF were dispersed within core part of the nanofibers. The core/sheath magnetic composite nanofibers exhibited superparamagnetic behavior at room temperature and the magnetic nanoparticles in MRF well responded to an applied magnetic field. Also, the mechanical properties of the nanofiber were improved in the magnetic field. This study aimed to fabricate core/sheath magnetic composite nanofibers using coaxial electrospinning and characterize the magnetic as well as mechanical properties of composite nanofibers.  相似文献   

7.
本文采用第一性原理密度泛函理论系统的研究了V原子单掺杂和双掺杂(ZnO)12团簇的结构和磁性质。我们考虑了三种掺杂方式:替代掺杂,外掺杂和内掺杂。单掺杂时,替代掺杂团簇是最稳定结构,而对于双掺杂,外掺杂团簇是最稳定结构。团簇磁矩主要来自V-3d态的贡献,4s和4p态也贡献了一小部分磁矩。由于轨道杂化,相邻的Zn和O原子上也产生少量自旋。V原子掺杂团簇的总磁矩与掺杂位置有关,说明V掺杂(ZnO)12团簇在可调磁矩的磁性材料领域有潜在应用价值。  相似文献   

8.
本文采用第一性原理密度泛函理论系统的研究了V原子单掺杂和双掺杂(ZnO)_(12)团簇的结构和磁性质.我们考虑了三种掺杂方式:替代掺杂,外掺杂和内掺杂.单掺杂时,替代掺杂团簇是最稳定结构,而对于双掺杂,外掺杂团簇是最稳定结构.团簇磁矩主要来自V-3d态的贡献,4s和4p态也贡献了一小部分磁矩.由于轨道杂化,相邻的Zn和O原子上也产生少量自旋.V原子掺杂团簇的总磁矩与掺杂位置有关,说明V掺杂(ZnO)_(12)团簇在可调磁矩的磁性材料领域有潜在应用价值.  相似文献   

9.
We present a computational method for the ab-initio study of the optical and magnetic properties using the augmented plane wave plus local orbitals (APW+lo) method. The calculations are presented within the local density (LDA) approximation. Erbium silicide (ErSi2) is representative of the whole trivalent heavy-rare-earth disilicides family, and its study will provide information valid for all of them. Thus, the study of its optical and magnetic properties is very important, especially for the calculation of magneto-optical quantities. In this paper the optical and magnetic properties are well described. Up to now no theoretical study on optical and magnetic properties of ErSi2 is available in the literature. We report theoretical calculations of the reel and imaginary parts of the dielectric function (DF), the refractive index and the extinction coefficient, the spectra of the reflectivity, the absorption coefficient, the energy-loss function (ELF), and the magnetic moments.  相似文献   

10.
The structural and magnetic properties of TM_(13 )and TM_(13)@Au_(32 )clusters(TM=Mn,Co)are studied by firstprinciples calculations.We find that the Au_(32 )cluster can tune not only the magnetic moment but also the magnetic coupling properties between the TM atoms of the TM cluster.The Au_(32 )cluster can increase the net magnetic moment of Mn_(13 )clusters while reducing that of Co_(13 )clusters.The interaction between Au and Mn atoms induces more Mn atoms to form spin parallel coupling,resulting in an increase of the total magnetic moment of Mn_(13 )clusters,while for the Co_(13 )clusters,the interaction between Au and Co atoms does not change the magnetic coupling states between the Co atoms,but reduces the magnetic moment of the Co atoms,leading to a decrease of the total magnetic moment of this system.Our findings indicate that the encapsulation of Au_(32 )clusters can not only raise the chemical stability of TM clusters,but also can tune their magnetic coupling properties and magnetic moment,which enables such systems to be widely applied in fields of spintronics and medical science.  相似文献   

11.
First-principles calculations are used to study the structural, electronic and magnetic properties of (Pd, Pt)-Mn-Ni-(Ga, In, Sn, Sb) alloys, which display multifunctional properties like the magnetic shape-memory, magnetocaloric and exchange bias effect. The ab initio calculations give a basic understanding of the underlying physics which is associated with the complex magnetic behavior arising from competing ferro- and antiferromagnetic interactions with increasing number of Mn excess atoms in the unit cell. This information allows to optimize, for example, the magnetocaloric effect by using the strong influence of compositional changes on the magnetic interactions. Thermodynamic properties can be calculated by using the ab initio magnetic exchange parameters in finite-temperature Monte Carlo simulations. We present guidelines of how to improve the functional properties. For Pt-Ni-Mn-Ga alloys, a shape memory effect with 14% strain can be achieved in an external magnetic field.  相似文献   

12.
We have investigated the electronic and magnetic properties of the room temperature ferromagnetic diluted magnetic semiconductor (DMS) (Zn,Cr)Te with density functional calculations. The electronic and magnetic properties of (Zn,Cr)Te are very similar with those of the typical DMS (Ga,Mn)As. The stronger ionicity of ZnTe plays a key role in the electronic and magnetic properties of (Zn,Cr)Te.  相似文献   

13.
In this study, we investigate the dynamic magnetic properties of Ising-type core/shell nanowires (NW) for different spin systems. The model of NW X(Spin-1/2)@Y with Y = Spin-1/2, Spin-1 and Spin-3/2 are considered for discussing an effect of the nature of shell particle on the dynamic properties. The mean-field theory and Glauber-type stochastic dynamics have been successfully applied to this, and the results of the dynamic magnetic properties for the core/shell NW are obtained. Different shell spin states are employed to the analysis of dynamic magnetic behavior for core/shell NW. Results of numerical calculation for the magnetization and coercivity curves are discussed for the effect of shell particles, shell interaction and oscillating field frequency. All results present that dynamic magnetic properties of the NW strongly dependent on the shell particle and the shell interaction.  相似文献   

14.
We describe a simple method based on the electrospinning process to prepare heterogeneous hybrid submicronic fibers with magnetic behavior, consisting of Co nanoparticles embedded in a polyacrylonitrile (PAN) polymer. Quantity and anisotropy of magnetic nanoparticles are key parameters to improve the specific magnetic properties of fibers. We notably show that for higher Co nanoparticles concentration, their lower dispersity into the resulting fibers lead to dipolar interactions that become demagnetizing. The structural and morphological properties of Co nanodisks and of the resulting nanocomposite fibers are investigated by SEM, TEM, and EDX. The magnetic properties of the hybrid electrospun fibers have been evaluated with a SQUID magnetometer.  相似文献   

15.
Ferromagnetic powders which are surrounded by an electrically insulating film (soft magnetic composites (SMCs)) exhibit unique magnetic properties, such as relatively low magnetic losses and 3D isotropic magnetic behavior. In some electromagnetic applications, including microwave frequency range applications, it is necessary to increase electrical resistivity without any noticeable reduction in magnetic properties. To achieve this purpose, electrically resistant materials, for example, ferrites with acceptable magnetic properties, are suitable candidates. This paper focuses on the effects of the synthesized Ni–Zn ferrite addition on the magnetic properties of the SMCs containing Ni–Zn ferrite within iron particles. The structure was studied by means of X-ray diffraction (XRD). The microstructure and the powder morphology were examined by the use of scanning electron microscopy (SEM). The magnetic measurements on powders and samples were carried out using a vibrating sample magnetometer (VSM) and an LCR meter, respectively. The results indicate that the lowest magnetic loss and the highest magnetic permeability are related to the composites with 20 wt% ferrite and 2 wt% ferrite, respectively. Also, the composites with 10 wt% ferrite show a good combination of magnetic loss and magnetic permeability in the range 0–500 kHz.  相似文献   

16.
过渡金属掺杂氧化锌团簇的物性研究   总被引:1,自引:0,他引:1  
本文采用第一性原理密度泛函理论研究了过渡金属(TM)原子Cr和Fe单掺杂和双掺杂(ZnO)12团簇的结构和磁性质。我们考虑了替代掺杂和间隙掺杂。结果表明Cr 和 Fe间隙掺杂团簇结构最稳定。团簇磁矩主要来自TM原子3d态的贡献,4s 和4p 态也贡献了一小部分磁矩。由于轨道杂化,相邻的Zn和O原子上也产生少量自旋。最近邻TM原子间的磁性耦合,主要由两个TM原子之间的直接短程铁磁耦合和TM和O原子之间通过p-d杂化产生的反铁磁耦合这两种相互作用的竞争来决定。不同TM原子掺杂团簇的总磁矩与TM原子种类以及掺杂位置有关,说明在(ZnO)12团簇中掺杂不同TM原子在可调磁矩的磁性材料的领域有潜在应用价值。  相似文献   

17.
The magnetic properties of Cu2+, Cr3+, and Mn2+ ions in the newly reported 12- and 15-membered macrocyclic complexes are analysed by a theoretical approach. The calculated magnetic moment and magnetic anisotropy for various situations, especially for Cu(II) ion, suggest that the magnetic properties may lead to a better interpretation about the geometry. It is also suggested that the zero-field splitting Hamiltonian may be used for magnetic properties of some metal ions, which have orbital singlet ground term in these complexes.   相似文献   

18.
Fe-based metallic glasses(MGs) with excellent soft magnetic properties are applicable in a wide range of electronic industry. We show that the cryogenic thermal cycle has a sensitive effect on soft magnetic properties of Fe_(78)Si_9B_(13) glassy ribbon. The values of magnetic induction(or magnetic flux density) B and H_c coercivity c show fluctuation with increasing number of thermal cycles. This phenomenon is explained as thermal-cycle-induced stochastically structural aging or rejuvenation which randomly fluctuates magnetic anisotropy and, consequently, the magnetic induction and coercivity. Overall,increasing the number of thermal cycles improves the soft magnetic properties of the ribbon. The results could help understand the relationship between relaxation and magnetic property, and the thermal cycle could provide an effective approach to improving performances of metallic glasses in industry.  相似文献   

19.
李领伟 《中国物理 B》2016,25(3):37502-037502
The magnetocaloric effect(MCE) in many rare earth(RE) based intermetallic compounds has been extensively investigated during the last two decades, not only due to their potential applications for magnetic refrigeration but also for better understanding of the fundamental problems of the materials. This paper reviews our recent progress on studying the magnetic properties and MCE in some binary or ternary intermetallic compounds of RE with low boiling point metal(s)(Zn, Mg, and Cd). Some of them exhibit promising MCE properties, which make them attractive for low temperature magnetic refrigeration. Characteristics of the magnetic transition, origin of large MCE, as well as the potential application of these compounds are thoroughly discussed. Additionally, a brief review of the magnetic and magnetocaloric properties in the quaternary rare earth nickel boroncarbides RENi_2B_2 C superconductors is also presented.  相似文献   

20.
Effect of alloying additional elements (Al, Si, Ti, V, Ni, Cu, Zr, Nb and Mo) with Fe-22/30 wt% Cr-12 wt% Co permanent magnet alloys manufactured by magnetic aging has been systematically studied with magnetic measurements and transmission electron microscopy (TEM), on a laboratory scale. It is found that the alloying shifts the optimum Cr content to a lower lever. Ti and Si show the greatest enhancement on magnetic properties yet narrow the optimum magnetic aging temperature range. Mo, Nb and Cu, when used together with Si, promote magnetic properties and widen the optimum magnetic aging temperature range. Ni and Zr are simply magnetic diluents. V is good for the magnetic properties only at a large amount of addition. The origin of alloying effects explored by TEM microscopy is attributed to the degree of particle entanglement as well as elongation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号