首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Formation of nearly monodiperse MnO nanocrystals by simple heating of Mn stearate in octadecene was studied systematically and quantitatively as a model for non-injection synthesis of nanocrystals. For controlling the shape of the nanocrystals, that is, rice, rods, peanuts, needles, and dots, either an activation reagent (ocadecanol) or an inhibitor (stearic acid) might be added prior to heating. The quantitative results of this typical non-injection system reveal that the formation of nearly monodisperse nanocrystals did not follow the well-known "focusing of size distribution" mechanism. A new growth mechanism, self-focusing enabled by inter-particle diffusion, is proposed. Different from the traditional "focusing of size distribution", self-focusing not only affects the growth process of the nanocrystals, but may also play a role in controlling nucleation. Because of the simplicity of the reaction system, it was possible to also identify the chemical reactions associated with the growth and ripening of MnO nanocrystals with a variety of shapes. Through a recycling reaction path, water was identified as a decisive component in determining the kinetics for both growth and ripening in this system, although the reaction occurred at around 300 degrees C.  相似文献   

2.
This work reports the development of a fast and simple "one-pot" route for the synthesis of hybrid Au-ZnO hexagonal nanopyramids by sequential homogeneous-heterogeneous nucleation steps involving both Au and Zn ions using microwave irradiation (MWI). The rapid decomposition of zinc acetate by MWI in the presence of a mixture of oleic acid (OAc) and oleylamine (OAm) results in the formation of hexagonal ZnO nanopyramids. In the presence of Au ions, the initially formed Au nanocrystals act as heterogeneous nuclei for the nucleation and growth of the ZnO nanopyramids. The Au nanoparticles promote the heterogeneous nucleation of ZnO and the formation of the hexagonal base of the ZnO nanopyramids. Using preformed Au nanoparticles instead of Au ions results in a narrow size distribution of uniform Au-ZnO nanopyramids, each consisting of a gold nanoparticle embedded in the center of the hexagonal base of the ZnO nanopyramid. We study the factors that control the nucleation and growth of these complex structures, and provide new insights into the stepwise homogeneous-heterogeneous mechanism and the conventional heterogeneous nucleation on preformed Au nanoparticles. The formation of the hetero nanostructures Au-ZnO nanopyramids is strongly dependent on the molar ratios of OAc to OAm. The presence of OAc with a considerable dipole moment results in strong electrostatic interaction with the polar surfaces of the growing ZnO nanocrystals thus resulting in slowing the growth rate of the polar planes and allowing the formation of well-developed facets. In the absence of Au nanoparticles, a high concentration of zinc acetate and longer MWI times are required for the production of the nanopyramids. The gold nanoparticles could provide the metallic contact points within the hybrid nanopyramids which could facilitate the bottom-up assembly of Au-ZnO devices. Furthermore, the Au-ZnO nanopyramids could have improved performance in solar energy conversion and photocatalysis.  相似文献   

3.
Synthesis of high quality zinc blende CdSe nanocrystals   总被引:1,自引:0,他引:1  
Highly homogeneous and luminescent CdSe colloidal nanocrystals in the less common zinc blende crystal structure have been obtained at high temperature in a noncoordinating organic solvent. The key parameter appears to be the addition of a phosphonic acid to the trioctylphosphine-selenium complex before its injection into the hot cadmium mixture, while the role of temperature is less relevant. Compared to standard (wurtzite) colloidal CdSe preparations, we find that the growth rate is considerably reduced, and the energy gap between the first two absorption bands becomes larger.  相似文献   

4.
Branched CdTe nanocrystals with zinc blende structure were directly synthesized in the early growth stage at a high initial concentration of cadmium precursor and a high molar ratio of Cd precursor to Te precuesor. Activation of the cadmium precursor by octadecylamine was found to be critical for the formation of branched CdTe nanocrystals. Furthermore, these as-prepared CdTe nanocrystals can evolve into nearly monodisperse dots through Ostwald ripening and still keep strong photoluminescence. These results manifest a new route to synthesize branch- and dot-shaped CdTe nanocrystals with zinc blende structure.  相似文献   

5.
We report the study of complex and unexpected dependencies of nanocrystal size as well as nanocrystal‐size distribution on various reaction parameters in the synthesis of ZnO nanocrystals using poly(vinyl pyrollidone) (PVP) as a capping agent. This method establishes a qualitatively different growth mechanism to the anticipated Ostwald ripening behavior. The study of size‐distribution kinetics and an understanding of the observed non‐monotonic behaviors provides a route to rational synthesis. We used a simple, but accurate, approach to estimate the size‐distribution function of nanocrystals from the UV‐absorption spectrum. Our results demonstrate the accuracy and generality of this approach, and we also illustrate its application to various semiconducting nanocrystals, such as ZnO, ZnS, and CdSe, over a wide size range (1.8–5.3 nm).  相似文献   

6.
High quality CoPt(3) nanocrystals were synthesized via simultaneous reduction of platinum acetylacetonate and thermodecomposition of cobalt carbonyl in the presence of 1-adamantanecarboxylic acid and hexadecylamine as stabilizing agents. The high flexibility and reproducibility of the synthesis allows us to consider CoPt(3) nanocrystals as a model system for the hot organometallic synthesis of metal nanoparticles. Different experimental conditions (reaction temperature, concentration of stabilizing agents, ratio between cobalt and platinum precursors, etc.) have been investigated to reveal the processes governing the formation of the metal alloy nanocrystals. It was found that CoPt(3) nanocrystals nucleate and grow up to their final size at an early stage of the synthesis with no Ostwald ripening observed upon further heating. In this case, the nanocrystal size can be controlled only via proper balance between the rates for nucleation and for growth from the molecular precursors. Thus, the size of CoPt(3) nanocrystals can be precisely tuned from approximately 3 nm up to approximately 18 nm in a predictable and reproducible way. The mechanism of homogeneous nucleation, evolution of the nanocrystal ensemble in the absence of Ostwald ripening, nanocrystal faceting, and size-dependent magnetic properties are investigated and discussed on the example of CoPt(3) magnetic alloy nanocrystals. The developed approach was found to be applicable to other systems, e.g., FePt and CoPd(2) magnetic alloy nanocrystals.  相似文献   

7.
Hybrid nanofibers of ZnO precursors/PET were fabricated by electrospinning a nonaqueous poly(ethylene terephthalate) (PET) solution containing zinc acetate dihydrate. Scanning electron microscopy images showed that the as prepared nanofibers had smooth and uniform surfaces, and the diameter was decreased with increasing zinc acetate dihydrate content and reducing PET concentration. After the treatment by a mild process of immersing the fibers in ammonia‐ethanol mixtures (pH ≈ 9–11), the surface of the nanofibers became rough during the formation of ZnO nanocrystals in the fibers. High resolution transmission electron microscopy images showed that the mean particle size became smaller with increasing diameter of the polymer fibers and decreasing content of ZnO. Fourier transform infrared spectra confirmed the ZnO formation in the hybrid nanofibers. X‐ray diffractometry patterns indicated that ZnO had the Wurtzite structure. The formation and growth of ZnO nanocrystals in the nanofiber matrices was also influenced by the various other parameters, that is, the pH value of the reaction solution, the content of zinc acetate dihydrate within the fibers, the reaction time and temperature. Photoluminescence spectra under excitation at 300 nm revealed a broad and intense ultraviolet emission. The UV‐visible diffuse reflectance spectra demonstrated the blue shift in the absorbance curve, which was ascribed to the quantum confinement effects of ZnO nanoparticles in the hybrid materials. These hybrid nanofibers can potentially be used in light emitters, chemical sensors, photo‐catalysts and solar cells. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1360–1368, 2011  相似文献   

8.
Micropatterns of ZnO nanoarrays were simply and successfully fabricated in an aqueous solution without any high-temperature treatment and/or expensive catalyst. In situ forced hydrolysis of patterned anhydrous zinc acetate, derived by ultraviolet irradiation with a photomask, resulted in heterogeneous nucleation and growth to form ZnO nanoarrays. Micropatterns of ZnO nanoarrays were characterized by FE-SEM and XRD. ZnO nanoarrays were well site-selectively deposited on anhydrous zinc acetate coated regions at 88 degrees C. HR-TEM clarified the formation mechanism in which anhydrous zinc acetate showed a tendency of forced hydrolyzation to ZnO nanocrystals at the initial stage in the reaction solution.  相似文献   

9.
We report the study of complex and unexpected dependencies of nanocrystal size as well as nanocrystal-size distribution on various reaction parameters in the synthesis of ZnO nanocrystals using poly(vinyl pyrollidone) (PVP) as a capping agent. This method establishes a qualitatively different growth mechanism to the anticipated Ostwald ripening behavior. The study of size-distribution kinetics and an understanding of the observed non-monotonic behaviors provides a route to rational synthesis. We used a simple, but accurate, approach to estimate the size-distribution function of nanocrystals from the UV-absorption spectrum. Our results demonstrate the accuracy and generality of this approach, and we also illustrate its application to various semiconducting nanocrystals, such as ZnO, ZnS, and CdSe, over a wide size range (1.8-5.3 nm).  相似文献   

10.
The influence of surface modification on the luminescence of colloidal ZnO nanocrystals is described, with particular emphasis given to factors increasing excitonic emission quantum yields. Changes in nanocrystal size, shape, and luminescence intensities have been measured for nanocrystals capped by dodecylamine (DDA) and trioctylphosphine oxide after different growth times. Green trap emission intensities show a direct correlation with surface hydroxide concentrations. Contrary to expectations, there is no direct correlation between excitonic emission quenching and surface hydroxide concentrations. The nearly pure excitonic emission observed after heating in DDA is attributed to the removal of surface defects from the ZnO nanocrystal surfaces and to the relatively high packing density of DDA on the ZnO surfaces. Rapid, nondispersive ripening of ZnO nanocrystals upon heating in DDA is observed and explained using a colloidal growth model.  相似文献   

11.
We report direct visualization of irreversible chemical reactions in space and time with 4D electron microscopy. Specifically, transient structures are imaged following electron transfer in copper-tetracyanoquinodimethane [Cu(TCNQ)] crystals, and the oxidation/reduction process, which is irreversible, is elucidated using the single-shot operation mode of the microscope. We observed the fast, initial structural rearrangement due to Cu(+) reduction and the slower growth of metallic Cu(0) nanocrystals (Ostwald ripening) following initiation of the reaction with a pulse of visible light. The mechanism involves electron transfer from TCNQ anion-radical to Cu(+), morphological changes, and thermally driven growth of discrete Cu(0) nanocrystals embedded in an amorphous carbon skeleton of TCNQ. This in situ visualization of structures during reactions should be extendable to other classes of reactive systems.  相似文献   

12.
Wurtzite ZnO hexagonal nanopyramids were successfully synthesized in the liquid phase from homogeneous methanolic solutions of zinc acetate and tetramethylammonium hydroxide at an excess of zinc ions. The formation and properties of the nanocrystals were examined as a function of synthesis conditions. No significant influence of the [Zn(2+)]/[OH(-)] ratio was noticed on the final particle size, in spite of increased amounts of OH(-) ions, which tend to accelerate the particle nucleation and growth. Nevertheless, the reactant concentration ratio influences the surface properties of the ZnO nanocrystals. Mesoporous ZnO films were prepared by doctor blading ethanolic pastes containing ZnO nanoparticles and ethyl cellulose onto FTO conductive glass substrate followed by calcination. Additionally, the influence of a plasticizer (triacetin)-used during the paste preparation-on the film quality was investigated. A higher content of ZnO nanoparticles and plasticizer in the pastes improved the film quality. Four different temperatures (i.e., 400, 425, 450, and 475 °C) were used for the film calcination and their influence on the structural properties of the films was characterized. In principle, increasing the calcination temperature goes hand in hand with an increase of particle size, as well as the pore diameter and reduction of the surface area. Suitable mesoporous films were employed as photoanodes in dye sensitized solar cells (DSSCs). In order to assess the effect of the varied parameters on complete DSSC devices-using cis-diisothiocyanato-bis(2,2'-bipyridyl-4,4'-dicarboxylato) ruthenium(II)bis(tetrabutylammonium (N719) as a sensitizer-incident photon to current efficiency (IPCE) and current voltage measurements were carried out. The IPCE measurements confirmed photoinduced electron injection from the dye, reaching IPCE values up to 76%. Furthermore, current-voltage characteristics of complete cells emphasized the importance of the proper preparation methods and temperatures. These features are important assets for the preparation of nanocrystalline ZnO based photoelectrodes and for improving the DSSC performance.  相似文献   

13.
We have studied the synthesis of ZnO nanostructures over a wide range of parameters to determine the kinetics of the nanocrystals growth. The initial rapid nucleation and growth is kinetically controlled, the subsequent ZnO nanocrystals growth is thermodynamically controlled through the diffusion limited Ostwald coarsening. The ZnO coarsening rates increased with number of alcohol’s alkyl group carbons and temperature increase, pointing to importance of the solvent viscosity, dielectric constants, surface energy and the bulk solubility. The results are consistent with the Lifshitz–Slyozov–Wagner model. For all alcohols, in the NaOH induced reaction, a lower activation energy was observed compared to the aqueous reaction. A lower ZnO solubility, obtained by the water synthesis could be responsible for these observations. Our results point to the importance of the reactant selection in controlling the kinetics of the nanostructure formation, their size and the nature of the surface defects responsible for their luminescence.  相似文献   

14.
A general and facile approach has been developed to prepare various metal oxide nanocrystals from commercially available metal acetate precursors using an amine-mediated reaction. The influence of temperature and capping agents on the yield and final morphology of the metal oxides nanocrystals was investigated. The approach was applied in the synthesis of shape-controlled ZnO nanocrystals. ZnO nanowires, nanorods, bullets and triangular nanocrystals were successfully prepared by tuning the molar ratio between amine to zinc acetate precursor. On the basis of FTIR and NMR spectroscopic studies, we propose that the amine could mediate the breakdown of the metal acetates through a nucleophilic attack mechanism. The results suggest that amine can play dual role as both the attacking agent and capping agent in this new methodology.  相似文献   

15.
A nonhydrolytic route to quantum-sized (d < 9 nm) ZnO nanocrystals in homogeneous organic solutions is presented. Nearly spherical ZnO nanocrystals were grown in a surfactant mixture of hexadecylamine and oleic acid (OLEA) by means of a two-step chemical process, based on the hot reduction (at 180-250 degrees C) of a zinc halide by superhydride (LiBEt3H) followed by oxidation of the resulting product. The experimental results suggested that the controlled growth of ZnO in the nanosized regime depended both on the OLEA-assisted generation of intermediate metallic nanoparticles and on the adjustment of their oxidation conditions by using a mild oxidant, trimethylamine-N-oxide, rather than molecular oxygen. The present synthetic approach demonstrates to be particularly suitable to prepare organic-soluble ultra-small ZnO nanocrystals of low size dispersion and of stable size, which are appealing for optoelectronic, catalytic, and sensing purposes.  相似文献   

16.
Esterification of chloro-4-hexene-2 with zinc stearate in tetrahydrofuran at 60° is a moderate reaction, strongly catalysed by zinc chloride. That catalyst is necessary in the case of calcium stearate. The synergistic effect between the two reactants cannot be explained first by the exchange reaction between zinc chloride and calcium stearate; that reaction is reversible and limited. A better explanation is based on the formation of complexes between both stearates, or both chlorides, or eventually between zinc chloride and calcium stearate. The catalytic activity of zinc chloride in these complexes is decreased or even inhibited. There is no true synergistic effect between aliphatic phosphites and zinc stearate at 60° in THF. There is only catalysis of allylic chlorine substitution by a phosphonate group by the zinc chloride produced in the reaction. In dichloroethane at 60°, each of the two stearates has a stabilizing effect, although by different mechanisms, zinc stearate being more active; the zinc chloride which is formed is a catalyst, in the presence of hydrochloric acid, for hexadiene oligomerization. Transposition of the previous results to the polymer has been carried out by using a Brabender plastograph. A direct correlation has been obtained concerning the efficiency of mixtures of the two stearates versus the dehydrochlorination and the crosslinking reactions.  相似文献   

17.
The influence of temperature on the interactions between Cu(II) hexadecanoate (CuC16) and N,N′-dicyclohexylbenzothiazole-2-sulfenamide (DCBS), stearic acid, sulfur and zinc oxide (ZnO) were studied by differential scanning calorimetry, infrared spectroscopy, electron paramagnetic resonance spectroscopy and X-ray analysis in the absence of rubber. Comparison of the results reveals that in most cases physical processes (dissolution, melting) occurred in the studied systems.However, the most favorable thermal reaction appears to be the formation of Cu(II) complexes with DCBS (or DCBS fragments) and the formation of zinc stearate in the presence of stearic acid and ZnO on the action of heat.  相似文献   

18.
ZnO nanowhiskers are successfully fabricated on an anhydrous zinc acetate coated substrate by its in situ forced hydrolysis at the initial stage without pre-existing ZnO seeds or catalyst. HR-TEM clarified the formation mechanism that in situ forced hydrolysis of an anhydrous zinc acetate layer to ZnO nanocrystals at the initial stage promoted growth of ZnO nanowhiskers by heterogeneous nucleation and growth. ZnO nanowhiskers films show high transmittance over 80% in the visible range and bandgap energy of 3.29 eV. Porous semiconductor ZnO films show good photo-induced electrical properties after various concentrations of DNA molecules labeled with photoactive dye molecules were adsorbed. In situ forced hydrolysis-assisted technique at low temperature can be useful for the fabrication of optoelectronic devices with low cost and without using expensive catalyst.  相似文献   

19.
ZnO nanocrystals, rod-, carnation-, and flower-like structures, have been synthesized in a high yield through low-temperature synthetic methods. Well-aligned ZnO nanorods having hexagonal wurtzite structure were grown on the ZnO thin films assembled by a spin-coating method. The morphologies of ZnO seed films are affected by pHs of sol–gel solutions, resulting smaller sizes and homogeneous roughness at higher pHs and higher number of spin-coating times. The carnation-like structures, average size of about 2–3 μm, were assembled by tens of uniform ZnO nanosheet petals of ∼50 nm in thickness when a different volume ratio of the precursory solution was used. ZnO nanocrystals on the facets of the compact ZnO nanorods have grown to linear nanorods having an average diameter of ∼500 nm and length of ∼2 μm. Furthermore, a noticeable difference in the growth of ZnO nanocrystals in the presence of various surfactants, polyvinylpyrrolidone, polyvinylsulphonic acid, and polyethyleneimine, has been observed and discussed.  相似文献   

20.
Using extensive state-of-the-art experiments over a wide range of synthesis parameters, such as the temperature and concentrations of different reactants, we establish qualitatively different growth kinetics for ZnO nanocrystals compared to all growth kinetics of semiconductor nanocrystals, including ZnO, discussed so far in the literature. The growth rate is shown to be strongly dependent on the concentration of (OH)- in an intriguing nonmonotonic manner as well as on temperature and is almost invariably much slower than well-known and generally accepted growth mechanisms based on a diffusion-controlled Ostwald ripening process or that expected in the surface reaction controlled regime. We show that these qualitatively different results arise from the unexpected role played by a part of the reactants by inhibiting rather than facilitating the reaction; we explain this extraordinary result in terms of an effective passivating layer around the growing nanocrystals formed by a virtual capping shell of Na+ ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号