首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A study was carried out on the butylaminolysis reaction of 4-nitrophenyl caprate in AOT/chlorobenzene/water microemulsions, with the observed rate constant, kobs, showing both first- and second-order dependence on butylamine concentration. The first-order term in [BuNH2] is due to the reaction occurring at the interface of the microemulsion while the second-order term is due to the reaction in the continuous medium. The different kinetic behavior is accounted for by the mechanism by which the reaction proceeds: at the interface of the microemulsion, the rate-determining step is the formation of the addition intermediate, T+/-, whereas in the continuous medium the slow step is the base-catalyzed decomposition of this intermediate. The application of the pseudophase formalism allows the observed kinetic behavior to be explained and to obtain the rate constants at the interface, ki2=0.13 M-1 s-1, and in the continuous medium, ko2KT=2.46x10(-2) M-2 s-1. These values indicate that the reaction rate decreases approximately 23 times upon going from the aqueous medium to the interface of the microemulsion, whereas the rate constant in the continuous medium is consistent with that obtained in pure chlorobenzene, ko2KT=2.09x10(-2) M-2 s-1.  相似文献   

2.
A study was carried out on the solvolysis reactions of different benzoyl halides in microemulsions of water/NH4DEHP/isooctane, where NH4DEHP is ammonium bis(2-ethylhexyl) phosphate. Because of the low solubility of benzoyl halides in water, they are distributed between the continuous medium and the interface of the microemulsion, where the reaction takes place. The application of the pseudophase model has allowed us to obtain the distribution constants and the rate constants at the interface for the benzoyl halides. Reaction mechanisms and the changes in these mechanisms in terms of the water content of the microemulsion have been determined on the basis of kinetic data. The influence of the substituent and the leaving group on the reaction rate has been investigated. A comparison of kinetic results with those previously obtained in water/AOT/isooctane microemulsions allows a kinetic evaluation of the change in the microemulsion properties with the surfactant.  相似文献   

3.
The mechanism of glyme catalyzed ester aminolysis in chlorobenzene should be modified by including a new reaction pathway that shows a first-order dependence on the concentration of the phase transfer catalyst and a second-order dependence on butylamine.  相似文献   

4.
The solvolysis reactivity of benzoyl chlorides entails a high sensitivity on medium properties. A systematic study of the reaction of a series of these substrates, varying the electron-withdrawing character of the substituent, has been performed in nonionic microemulsions. The kinetic effects due to variation of microemulsion compositions can be assigned to modifications in system properties, to be precise, to modifications in interface properties. Microemulsion properties that are obtained from kinetic analysis of solvolysis show a good agreement with the characterization of the microemulsion that was made via 1H NMR and solvatochromic fluorescence probes. Benzoyl chlorides with electron-donating groups react through a dissociative mechanism, whereas electron-withdrawing groups favor an associative mechanism. A comparative analysis of reactivity between the different substrates at the interface shows a variation in the contributions of both reaction pathways, associative and dissociative, to the whole reaction mechanism. The confined media shift the point where the mechanism changes from an associative to a dissociative pathway, far away from the turning point in water. Furthermore, the change in mechanism can be modulated by modification of the microemulsion composition.  相似文献   

5.
Raman spectroscopy is used to evidence both the nature of the interphase reaction between ZnO and MnO2 particles and its kinetic evolution. Zn cations migrate from the ZnO grains during oxygen vacancies formation process and diffuse into the MnO2 particles leading to an interphase region with an intermediate valence Mn+3-O-Mn+4. Large amounts of desorbed Zn cations promote the formation of ZnMn2O4 structure, in addition to the intermediate valence state. The system evolves towards complete formation of the spinel phase at higher thermal treatment times. The reactivity of the ZnO plays an important role in the formation of this interphase. Low-reactivity ZnO powder, in which the oxygen vacancies are previously produced, shows a stabilization of the intermediate valence state with very limited formation of the spinel phase. A clear correlation between the amount of the intermediate state interphase and the magnetic properties has been established.  相似文献   

6.
A study was carried out on the influence of different polyethylene glycol dimethyl ethers (glymes) on the conductance percolation of AOT/isooctane/water microemulsions. The glymes used were chosen on the basis of this chain length (the number of polymeric units). In all cases we observed a decrease in the percolation threshold on increasing the amount of a glyme added to the microemulsion. We observed a correlation between the effect exerted by the glyme and its chain length, which shows the importance of including them in the interface for the percolative phenomenon. Such inclusion modifies the properties of the AOT film, facilitating the exchange of matter between droplets.  相似文献   

7.

The oxidation reaction of phenyl hydrazine (Phh) by hexacyanoferrate ([Fe(CN)6]3?) has been studied in water‐in‐oil (w/o) microemulsion media. The kinetic profile of the reaction was investigated as a function of [Phh], droplet size, and droplet concentration. Comparison of the kinetic profiles of the reaction in microemulsion, water‐urea, and water‐AOT‐urea media indicates that the kinetic profile of the reaction in microemulsion shows a behavior similar to that of the reaction in water‐AOT‐urea medium at 4 M urea. An initial increase and then a decrease in kobs is observed with increasing molar ratio, Wo(=[H2O]/[AOT]) at constant [AOT] (=0.4 M), whereas kobs decreases upon increasing the AOT concentration at constant molar ratio.  相似文献   

8.
A kinetic study was carried out on various solvolytic reactions in water/ NH4OT /isooctane microemulsions. The NH4OT surfactant is a derivative of the sodium salt of bis(2-ethylhexyl) sulfosuccinate (NaOT or AOT), where the Na+ counterion has been replaced by NH4+. The counterion substitution effects the phase diagram of the system, and therefore, NH4OT-based microemulsions with high water content reaching values of W = 350 (W = [H2O]/[NH4OT]) can be obtained. The presence of high W values suggests a transition in the microemulsion microstructure from water-in-oil (w/o) to oil-in-water (o/w), as was confirmed by conductivity and 1H NMR self-diffusion measurements. The interpretation of the kinetic studies in terms of pseudophase formalism allows us to analyze the effect of the microemulsion on chemical reactivity, regardless of its microstructure. It has been confirmed that the values of the solvolytic rate constants at the interphase of oil-in-water microemulsions are similar to those obtained for aqueous SDS systems, showing that the hydration degree of the interphase of the oil-in-water microemulsions is independent of W. The influence of the surfactant counterion on the solvolytic rate constants was analyzed by comparing HOT-, NaOT-, and NH4OT-based microemulsions. An important influence on the rate constants caused by the changes in the structural properties of water has been observed as was confirmed by the water 1H NMR signals.  相似文献   

9.
Direct arylation of the ortho‐C? H bond of an aryl pyridine or an aryl imine with an aryl Grignard reagent has been achieved by using an iron‐diamine catalyst and a dichloroalkane as an oxidant in a short reaction time (e.g., 5 min) under mild conditions (0 °C). The use of an aromatic co‐solvent, such as chlorobenzene and benzene, and slow addition of the Grignard reagent are essential for the high efficiency of the reaction. The present arylation reaction has distinct merits over the previously developed reaction that used an arylzinc reagent, such as its reaction rate and atom economy. Selective C? H bond activation occurs in the presence of a leaving group, such as a tosyloxy, chloro, and bromo group. Studies on a stoichiometric reaction and kinetic isotope effects shed light on the reaction intermediate and the C? H bond‐activation step.  相似文献   

10.
A kinetic study of the aminolysis of p-nitrophenyl acetate (NPA) by morpholine (MOR) in AOT/isooctane/water (w/o) microemulsions was conducted. Based on the solubilities of NPA and MOR in water and isooctane, both compounds partition between the continuous medium, interface and water microdroplets of the microemulsion. Because the rate of the aminolysis reaction decreases with decreasing polarity of the solvent, the reaction must take place to a negligible extent in the continuous medium relative to the interface and the aqueous microdroplets. We used the pseudo-phase model to determine the rate constants at the interface, k(2)(i), and in the water microdroplets, k(2)(w). Both k(2)(i) and k(2)(w) were found to be independent of W in the aminolysis of NPA by MOR. This is a result of the expected increase in k(2)(w) on decreasing W being offset by the decrease in k(2)(i) with increase in the water content of the system. Based on the results, the reaction takes place to an extent of only 16% in the water microdroplets at W=40, the proportion decreasing with decreasing water content.  相似文献   

11.
The Diels-Alder reaction between N-ethylmaleimide and cyclopentadiene in water/AOT/isooctane microemulsions, where AOT denotes sodium bis(2-ethylhexyl)sulfosuccinate, was studied. The rate of the reaction was found to be higher than that obtained in pure isooctane, irrespective of the particular microemulsion composition used. The efficiency of this catalytic action ranged from a factor of 3 at low water contents (viz., W = [H2O]/[AOT] = 2) to 15 at W = 35. On the basis of these results, the reaction takes place simultaneously in the continuous medium and at the microemulsion interface. The favorable arrangement of the reactants at the interface results in more than 95% of the reaction occurring in this microenvironment. The kinetic analysis revealed the rate constant at the microemulsion interface to change with the water content. For small W values a bimolecular rate constant at the interface close to that observed in hexane was obtained. This value increases with W and for W > 20, a value close to that obtained in ethanol was found. This can be ascribed to the absence of hydrogen bonding at the microemulsion interface as well as the accelerating effects due to enforced hydrophobic interactions.  相似文献   

12.
An effective medium theory is employed to derive a simple qualitative model of a pattern forming chemical reaction in a microemulsion. This spatially heterogeneous system is composed of water nanodroplets randomly distributed in oil. While some steps of the reaction are performed only inside the droplets, the transport through the extended medium occurs by diffusion of intermediate chemical reactants as well as by collisions of the droplets. We start to model the system with heterogeneous reaction-diffusion equations and then derive an equivalent effective spatially homogeneous reaction-diffusion model by using earlier results on homogenization in heterogeneous reaction-diffusion systems [S.Alonso, M.Ba?r, and R.Kapral, J. Chem. Phys. 134, 214102 (2009)]. We study the linear stability of the spatially homogeneous state in the resulting effective model and obtain a phase diagram of pattern formation, that is qualitatively similar to earlier experimental results for the Belousov-Zhabotinsky reaction in an aerosol OT (AOT)-water-in-oil microemulsion [V.K.Vanag and I.R.Epstein, Phys. Rev. Lett. 87, 228301 (2001)]. Moreover, we reproduce many patterns that have been observed in experiments with the Belousov-Zhabotinsky reaction in an AOT oil-in-water microemulsion by direct numerical simulations.  相似文献   

13.
Using water/AOT/n-octane reversed micelle as the medium, the optical signal of the reactive intermediate of laccase-catalyzed oxidation of o-phenylenediamine, which was indetectable in aqueous solutions, was successfully captured. Thus online kinetic studies of the intermediate were accomplished. Two-way kinetic spectral data were acquired with stopped-flow technique. By resolving the data with global analysis software, both the kinetic curves and the absorption spectra of the components involved in the reaction process were simultaneously obtained. The whole reaction in the reversed micelle was proved to be composed of two successive steps, an enzymatic generation of the intermediate and a following nonenzymatic decay of the intermediate. A consecutive first-order kinetic model of the whole reaction was confirmed. The influences of microenvironmental factors of the medium (such as the pH value of the water pool and the water/AOT ratio) on the detection of the intermediate were also investigated.  相似文献   

14.
 在无溶剂及二(2-乙基己基)丁二酸酯磺酸钠(AOT)/异辛烷/磷酸盐缓冲液微乳液体系中,研究了黑曲霉脂肪酶催化红花油水解反应的动力学. 结果表明,无溶剂及微乳液体系中反应的活化能分别为32.205和7.391 kJ/mol. 酶在无溶剂体系中的热稳定性高于微乳液中. 无溶剂及微乳液体系中的表观米氏常数分别为0.135和0.101 mol/L. 在两种体系中,乙醇对水解反应的抑制作用均为竞争性可逆抑制,且均在底物浓度大于0.819 mol/L时出现底物抑制现象. 结合胶团催化理论和酯键水解机理对两种体系中酶水解性能的差异进行了解释.  相似文献   

15.
In a recent experimental research, the formation of naphthalene has been demonstrated by La-mediated acetylene bicyclo-oligomerization in the gas phase, and this is the first report of metal-activated acetylene bicyclo-oligomerization to form the naphthalene. In this work, the complete reaction mechanism has been systematically analyzed on the doublet potential energy surface by employing density functional theory (DFT), the results showed that the computational results were consistent with experimental dates. Among them, two possible reaction pathways were identified: (1) LaC4H2 is formed by a second addition of acetylene molecule to LaC2H2 followed by dehydrogenation (path (a)). (2) First, dehydrogenation of LaC2H2, followed by the addition of a second acetylene molecule (path (b)), we found that the optimum pathway was path (a). According to the thermodynamic point of view, the reaction is highly exothermic and favorable. In addition, sequential acetylene additions coupled with dehydrogenation showed that the bicycle-oligomerization reaction can occur. For further analysis of the observed kinetic behavior, the energetic span model was utilized and confirmed the TOF-determining transition state (TDTS) and TOF-determining intermediate (TDI) of the overall reaction. Finally, the optimum path was found and demonstrated.  相似文献   

16.
Thermodynamic and kinetic parameters have been established for the reaction between the carbon acid, 4-nitrophenylnitromethane, (4-NPNM), and the base N’-n-propyl-N,N-di-n-propylbenzimidamide, (N’PDPBA), in mesitylene and in chlorobenzene. In some cases deuteron transfer from 4-(D2)NPNM to the base has also been studied. In addition, some results for the proton transfer reaction in tetrahydrofuran have been collected. Spectrophotometric methods have been employed to monitor the ion-pair product, which is solvatochromic. In general the solvent dependence of the parameters is as expected, but there is some indication of specific solvation. The kinetic isotope effects of 11 and 8 in mesitylene and chlorobenzene, respectively, are larger than those predicted classically. However, as is discussed the n-propyl group on the secondary nitrogen of the base may serve to reduce the extent of tunneling compared to that in an unsubstituted analogue by a steric effect.  相似文献   

17.
Ammonia and hydrochloric acid effects have been studied in the chlorobenzene hydrodechlorination in liquid phase on Pd/C catalysts. The addition of NH4OH to the reactant medium does not modify the reaction rate while in hydrochloric acid medium the activity was increased. The role of HCl acid in the activity is explained by a partial oxidation of the Pd particles.  相似文献   

18.
Solid bisphenol-A epoxy resin of medium molecular mass was cured using a Lewis acid initiator (ytterbium(III) trifluoromethanesulfonate) in three different proportions (0.5, 1 and 2 phr). A kinetic study was performed in a differential scanning calorimeter. The complete kinetic triplet was determined (activation energy, pre-exponential factor, and integral function of the degree of conversion) for each system. A kinetic analysis was performed with an integral isoconversional procedure (free model), and the kinetic model was determined both with the Coats-Redfern method (the obtained isoconversional value being accepted as the effective activation energy) and through the compensation effect. All the systems followed the same isothermal curing model simulated from non-isothermal ones. The growth-of-nuclei Avrami kinetic model A3/2 has been proposed as the polymerization kinetic model. The addition of initiator accelerated the reaction especially when 2 phr was added. 0.5 and 1 phr showed very few kinetic differences between them.  相似文献   

19.
Microemulsions are important formulations in cosmetics and pharmaceutics and one peculiarity lies in the so-called "phase inversion" that takes place at a given water-to-oil concentration ratio and where the average curvature of the surfactant film is zero. In that context, we investigated the structural transitions occurring in Brij 96-based microemulsions with the cosmetic oil ethyl oleate and studied the influence of the short chain alcohol butanol on their structure and properties as a function of water addition. The characterization has been carried out by means of transport properties, spectroscopy, DLS, SANS, and electrochemical methods. The results confirm that the nonionic Brij 96 in combination with butanol as cosurfactant forms a U-type microemulsion that upon addition of water undergoes a continuous transition from swollen reverse micelles to oil-in-water (O/W) microemulsion via a bicontinuous region. After determining the structural transition through viscosity and surface tension, the 2D-ROESY studies give an insight into the microstructure, i.e., the oil component ethyl oleate mainly is located at the hydrophobic tails of surfactant while butanol molecules reside preferentially in the interface. SANS experiments show a continuous increase of the size of the structural units with increasing water content. The DLS results are more complex and show the presence of two relaxation modes in these microemulsions for low water content and a single diffusive mode only for the O/W microemulsion droplets. The fast relaxation reflects the size of the structural units while the slower one is attributed to the formation of a network of percolated microemulsion aggregates. Electrochemical studies using ferrocene have been carried out and successfully elucidated the structural transformations with the help of diffusion coefficients. An unusual behavior of ferrocene has been observed in the present microheterogeneous medium, giving a deeper insight into ferrocene electrochemistry. NMR-ROESY experiments give information regarding the internal organization of the microemulsion droplets. In general, one finds a continuous structural transition from a W/O over a bicontinuous to an O/W microemulsion, however with a peculiar network formation over an extended concentration range, which is attributed to the somewhat amphiphilic oil ethyl oleate. The detailed knowledge of the structural behavior of this type of system might be important for their future applications.  相似文献   

20.
The quenching of the fluorescence of HPTS (1-hydroxypyrene-3,6,8-trisulfonate) by Cu(2+), Ni(2+), Co(2+), I(-), and CP(+) (cetylpyridinium cation) has been studied in the w/o microemulsion medium formed with water, AOT [sodium salt of bis (2-ethylhexyl) sulfosuccinic acid], and heptane as components at two [H(2)O]/[AOT] ratios (omega), 6 and 20. The quenching process has been found to be dynamic in nature. The lifetimes of HPTS in the microemulsion medium in the absence and in the presence of quencher have been determined. The analysis of the results has been performed in terms of the Stern-Volmer equation and the quenching sphere of action model. The Poisson distribution equation has been also used in the analysis of the probability of quencher distribution in the microemulsion compartment. The quenching of HPTS has been found to be much lower in microemulsion than in bulk water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号