首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An analytical method has been developed for the determination of a new antiepileptic drug, CGS 18416A, in human plasma. CGS 18416A is a new anticonvulsant representative of a novel class of water-soluble agents being developed for the treatment of epilepsy. Preclinical trials indicate sustained efficacy at relatively low oral doses, indicating a need for a sensitive assay. The method is based on capillary gas chromatography/mass spectrometry and utilizes stable isotope-labelled CGS 18416A as the internal standard. Samples (1 mL) are acidified, then washed with pentane/ethyl acetate, followed by liquid/liquid extraction at pH 11 with pentane/ethyl acetate. Extracts are then concentrated and analysed directly by gas chromatography/mass spectrometry. Separation is accomplished on a thick film methylsilicone capillary column. Mass spectrometry was carried out under positive ion ammonia Cl conditions with selected ion monitoring of the protonated molecular ions (m/z = 248 and 252) for CGS 18416A and the 13CD3-CGS 18416A, respectively. Specificity was demonstrated by the lack of interfering peaks at the retention time of CGS 18416A and the internal standard. Recovery and reproducibility assessments indicate good accuracy and precision over the validated concentration range of 0.2-51 ng/mL. The limit of quantification is 0.2 ng/mL and the method has sufficient sensitivity to support clinical trials. This is illustrated with an example of quantification in a normal volunteer following oral dosing.  相似文献   

2.
A simple and robust method for quantification of zolpidem in human plasma has been established using liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI MS/MS). Es-citalopram was used as an internal standard. Zolpidem and internal standard in plasma sample were extracted using solid-phase extraction cartridges (Oasis HLB, 1 cm3/30 mg). The samples were injected into a C8 reversed-phase column and the mobile phase used was acetonitrile-ammonium acetate (pH 4.6; 10 mm) (80:20, v/v) at a flow rate of 0.7 mL/min. Using MS/MS in the selected reaction-monitoring (SRM) mode, zolpidem and Es-citalopram were detected without any interference from human plasma matrix. Zolpidem produced a protonated precursor ion ([M+H]+) at m/z 308.1 and a corresponding product ion at m/z 235.1. The internal standard produced a protonated precursor ion ([M+H]+) at m/z 325.1 and a corresponding product ion at m/z 262.1. Detection of zolpidem in human plasma by the LC-ESI MS/MS method was accurate and precise with a quantification limit of 2.5 ng/mL. The proposed method was validated in the linear range 2.5-300 ng/mL. Reproducibility, recovery and stability of the method were evaluated. The method has been successfully applied to bioequivalence studies of zolpidem.  相似文献   

3.
A sensitive, selective and rapid LC–ESI–MS/MS method has been developed and validated for the quantification of copanlisib in mouse plasma using enasidenib as an internal standard (IS) as per regulatory guideline. Copanlisib and the IS were extracted from mouse plasma using ethyl acetate as an extraction solvent and chromatographed using an isocratic mobile phase (0.2% formic acid–acetonitrile; 25:75, v/v) on a HyPURITY C18 column. Copanlisib and the IS eluted at ~0.95 and 2.00 min, respectively. The MS/MS ion transitions monitored were m/z 481.1 → 360.1 and m/z 474.0 → 456.0 for copanlisib and the IS, respectively. The calibration range was 3.59–3588 ng/mL. The intra‐ and inter‐batch accuracy and precision (RE and RSD) across quality controls met the acceptance criteria. Stability studies showed that copanlisib was stable in mouse plasma for one month. This novel method has been applied to a pharmacokinetic study in mice.  相似文献   

4.
《Analytical letters》2012,45(11):2245-2253
ABSTRACT

An analytical method for the determination of diclofenac with tolfenamic acid as the internal standard was developed and validated in human plasma by capillary gas chromatography-mass spectrometry (GC/MS). After the addition of the internal standard, the compounds were extracted from plasma at acidic pH into diethylether, which was then evaporated to dryness. The compounds were derivatized with pentafluoropropionic anhydride (PFPA) and a mixture (1000:2:3, v/w/w) of N-methyl-N-trimethylsilyltrifluoroacetamide (MSTFA), ammonium iodide (NH4I), and dithioerythritol (DTE). They were determined by GC/MS at m/z 349 (a molecular ion) for diclofenac and m/z 270 (a base ion) for tolfenamic acid. The recovery of this procedure was 97.8%, and the linearity for calibration was 0.9907 as the coefficient factor. The detection and quantitation limits were 0.1 and 0.5 ng/mL, respectively.  相似文献   

5.
A new analytical approach, based on derivatization with 2,2,2-trichloroethyl chloroformate and gas chromatography/mass spectrometry (GC/MS), was investigated for qualitative and quantitative analyses of a large range of amphetamine-related drugs and ephedrines in plasma, urine and hair samples. Sample preparation involved alkaline extraction of analytes from biological samples using Extrelut columns, after addition of the internal standard 3,4-methylenedioxypropylamphetamine (MDPA), and subsequent derivatization to produce 2,2,2-trichloroethylcarbamates. GC/MS analyses, in splitless mode using a slightly polar 30-m capillary column, were performed with quadrupole or ion trap instruments. MS acquisition modes were electron ionization (EI) in full-scan or selected ion monitoring (SIM) modes (quadrupole), and full-scan MS or MS/MS modes with chemical ionization (CI) conditions (ion trap). EI spectra of 2,2,2-trichloroethylcarbamates showed variably abundant molecular ions as well as abundant diagnostic fragment ions, both characterized by ion clusters reflecting the isotope distribution of three chlorine atoms in the derivatized molecules. CI spectra showed abundant protonated molecules. Quantitative studies using EI SIM conditions gave recoveries in the range 74-89%, linear response over ranges of 10-2000 ng/mL (plasma and urine) and 0.20-20 ng/mg (hair), with corresponding limits of detection in the ranges 2-5 ng/mL and 0.1-0.2 ng/mg. Potential applications (following full method validation) include clinical and forensic toxicology, as well as doping control.  相似文献   

6.
Betahistine is widely used for the treatment of vertigo. Owing to first‐pass metabolism, 2‐pyridyl acetic acid (2PAA, major metabolite of betahistine) was considered as surrogate for quantitation. A specific and sensitive LC–MS/MS method was developed and validated for quantitation of 2PAA using turbo‐ion spray in a positive ion mode. A solid‐phase extraction was employed for the extraction of 2PAA and 2PAA d6 (IS) from human plasma. Chromatographic separation of analytes was achieved using an ACE CN, 5 μm (50 × 4.6 mm) column with a gradient mobile phase comprising acetonitrile–methanol (90:10% v /v) and 0.7% v/v formic acid in 0.5 mm ammonium trifluoroacetate in purified water (100% v/v). The retention times of 1.15 and 1.17 min for 2PAA and internal standard, respectively, were achieved. Quantitation of 2PAA and internal standard was achieved by monitoring multiple reaction monitoring transition pairs (m /z 138.1 to m /z 92.0 and m /z 142.1 to m /z 96.1, respectively). The developed method was validated for various parameters. The calibration curves of 2PAA showed linearity from 5.0 to 1500 ng/mL, with a lower limit of quantitation of 5.0 ng/mL. The bias and precision for inter‐ and intra‐batch assays were <10%. The developed method was used to support clinical sample analysis.  相似文献   

7.
A high‐sensitivity LC/MS/MS method was developed and validated for the simultaneous determination of mirodenafil and its major metabolite, SK‐3541, in human plasma. Mirodenafil, SK‐3541, and udenafil as an internal standard were extracted from plasma samples with methyl tert‐butyl ether. Chromatographic separation was performed on a Luna phenyl‐hexyl column (100 × 2.0 mm) with an isocratic mobile phase consisting of 5 mM ammonium formate and ACN (23:77, v/v) at a flow rate of 0.35 mL/min. Detection and quantification were performed using a mass spectrometer in selected reaction monitoring mode with positive ESI at m/z 532.3 → 296.1 for mirodenafil, m/z 488.1 → 296.1 for SK‐3541, and m/z 517.3 → 283.2 for udenafil. The calibration curves were linear over a concentration range of 2–500 pg/mL using 0.5 mL plasma for the microdose of mirodenafil (100 μg). Analytical method validation of the clinical dose (100 mg), with a calibration curve range of 2–500 ng/mL using 0.025‐mL plasma, was also conducted. The other LC‐MS/MS conditions were similar to those used for the microdosing. Each method was applied successfully to pharmacokinetic studies after a microdose or clinical dose of mirodenafil to six healthy Korean male volunteers.  相似文献   

8.
A sensitive liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) method was established and validated for the determination of glycyrrhizin in dog plasma. After treatment with methanol to precipitate proteins, plasma samples were analyzed on a reversed-phase C18 (ODS) column with a mobile phase of methanol:1% formic acid solution (75:25, v/v). MS determination was performed using negative electrospray ionization (negative ESI) in the selected ion monitoring mode. Glycyrrhizin was monitored at the m/z 821 channel and internal standard (gliquidone) at the m/z 526 channel. The calibration curve was linear over the range from 0.05 μg mL(-1) to 10 μg mL(-1) with a correlation coefficient above 0.99. This method was successfully applied to the pharmacokinetic studies in beagle dogs. The absolute bioavailability of glycyrrhizin in beagle dogs was 3.24%.  相似文献   

9.
薄海波 《色谱》2007,25(6):898-901
建立了多种水果和蔬菜中嘧菌酯残留的气相色谱/质谱分析方法。首先用乙酸乙酯-环己烷(体积比为1∶1)对样品中的嘧菌酯进行超声波提取,经硅胶固相萃取小柱对样品提取液进行净化、富集,采用气相色谱/质谱法以选择离子监测模式(m/z 344,372,388,403定性,m/z 344定量)进行检测。实验结果表明,嘧菌酯在0.01~1.0 mg/kg浓度范围内呈线性,其相关系数r>0.99。在低、中、高3个添加水平,嘧菌酯的回收率为85.2%~98.2%,相对标准偏差为5.8%~21.5%。方法的检测限不大于0.01 mg/kg,定量限不大于0.05 mg/kg。  相似文献   

10.
A sensitive and simple method based on ultrasonication extraction with a hexane/acetone (2:1, v/v) mixture, followed by clean up of the extract by solid-phase extraction (SPE) and gas chromatography/mass spectrometry (GC/MS) detection, has been developed and validated for the analysis of 20 estrogenic endocrine-disrupting chemicals (EEDCs) including phenolic xenoestrogens, synthetic and natural estrogens in river sediment. After extraction and purification, analytes are derivatised with a BSTFA/TMCS/pyridine (49:1:50, v/v/v) mixture and quantified by GC/MS. The GC/MS method involves switching between electron ionisation (EI) and chemical ionisation (CI); it also switches between selected ion storage and tandem mass spectrometry detection. The applicability of the method has been demonstrated by analysing extracts of French river sediments for which bioanalytical tests (in vitro) had already shown that they were impacted by estrogenic endocrine disrupters. The biological contribution of all the products detected in each sediment extract was compared to the estrogenic activity measured by bioassays.  相似文献   

11.
A sensitive and specific high-performance liquid chromatography/tandem mass spectrometry (HPLC/MS/MS) assay for the quantitative determination of gemcitabine (dFdC) and its metabolite 2',2'-difluorodeoxyuridine (dFdU) is presented. A 200-microL aliquot of human plasma was spiked with a mixture of internal standards, didanosine, lamivudine and fludarabine, and extracted using solid-phase extraction. Dried extracts were reconstituted in 1 mM ammonium acetate/acetonitrile (97:3, v/v) and 10-microL volumes were injected onto the HPLC system. Separation was achieved on a 150 x 2.1 mm C18 bonded phase endcapped with polar groups (Synergi Hydro-RP column) using an eluent composed of 1 mM ammonium acetate (pH 6.8)/acetonitrile (94:6, v/v). Detection was performed by positive ion electrospray ionization followed by MS/MS. The assay quantifies a range from 0.5 to 1000 ng/mL for gemcitabine and from 5 to 10,000 ng/mL for dFdU using 200 microL of human plasma sample. Validation results demonstrate that gemcitabine and dFdU concentrations can be accurately and precisely quantified in human plasma. This assay is used to support clinical pharmacologic studies with gemcitabine.  相似文献   

12.
食品中胆固醇色谱/质谱/质谱的测定   总被引:3,自引:0,他引:3  
王志元 《分析化学》1998,26(1):48-50
确立了用色谱/质谱/质谱测定食品中胆固醇的一种新方法,试样经乙酸乙酯提取后,GC/MS/MS测定分析,以胆固醇分子离子为母离了,以其子离子为定量分析的碎片离子。线性好,回收率高,方法可靠。  相似文献   

13.
A sensitive and selective liquid chromatography-tandem mass spectrometric (LC-MS/MS) method was developed and validated for the determination of sodium cromoglycate (SCG) in human plasma after a nasal dose of 10.4 mg sodium cromoglycate nasal spray, using pravastatin sodium as the internal standard. The method was validated over a linear range of 0.300-20.0 ng/mL. SCG and I.S. were extracted from 1.0 mL of heparinized plasma by C(18) solid-phase extraction cartridges using methanol as eluting solvent. The dried residue was reconstituted with 100 microL of mobile phase, and 10 microL was injected onto the LC-MS/MS system. Chromatographic separation was achieved on a C(18) column (250 x 4.6 mm i.d., 5 microm particle size) with a mobile phase of methanol-acetonitrile-water (containing 2 mmol/L ammonium acetate; 42.5:42.5:15, v/v/v) at a flow rate of 0.4 mL/min. The analytes were detected with a triple quad LC-MS/MS using ESI with positive ionization. Ions monitored in the multiple reaction monitoring mode were m/z 469.0 (precursor ion) to m/z 245.0 (product ion) for SCG and m/z 447.2 (precursor ion) to m/z327.1 (product ion) for pravastatin sodium (internal standard) The average recovery of SCG from human plasma was 94.88% and the lower limit of quantitation was 0.3 ng/mL. Results from a 3-day validation study demonstrated excellent precision and accuracy across the calibration range of 0.3-20 ng/mL. The method was successfully applied to the pharmacokinetic study of SCG in healthy Chinese volunteers. Copyright (c) 2008 John Wiley & Sons, Ltd.  相似文献   

14.
A simple, rapid and sensitive analytical method using liquid chromatography coupled to tandem mass spectrometry (LC‐MS/MS) detection with positive ion electrospray ionization was developed for the determination of dienogest in human K2EDTA plasma using levonorgestrel d6 as an internal standard (IS). Dienogest and IS were extracted from human plasma using simple liquid–liquid extraction. Chromatographic separation was achieved on a Zorbax XDB‐Phenyl column (4.6 × 75 mm, 3.5 µm) under isocratic conditions using acetonitrile–5 mm ammonium acetate (70:30, v/v) at a flow rate of 0.60 mL/min. The protonated precursor to product ion transitions monitored for dienogest and IS were at m/z 312.30 → 135.30 and 319.00 → 251.30, respectively. The method was validated with a linearity range of 1.003–200.896 ng/mL having a total analysis time for each chromatograph of 3.0 min. The method has shown tremendous reproducibility with intra‐ and inter‐day precision (coefficient of variation) <3.97 and 6.10%, respectively, and accuracy within ±4.0% of nominal values. The validated method was applied to a pharmacokinetic study in human plasma samples generated after administration of a single oral dose of 2.0 mg dienogest tablets to healthy female volunteers and was proved to be highly reliable for the analysis of clinical samples. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
A sensitive, rapid and simple liquid chromatography–electrospray ionization mass spectrometry (LC‐ESI‐MS/MS) method was developed for the quantitative determination of cyclobenzaprine in human plasma, to study the pharmacokinetic behavior of cyclobenzaprine capsule in healthy Chinese volunteers. With escitalopram as the internal standard (IS), sample pretreatment involved a one‐step liquid–liquid extraction using saturated sodium carbonate solution and hexane–diethyl ether (3:1, v/v). The separation was performed on an Ultimate XB‐CN column (150 × 2.1 mm, 5 µm). Isocratic elution was applied using acetonitrile–water (40:60, v/v) containing 10 m M ammonium acetate and 0.1% formic acid. The detection was carried out on a triple‐quadrupole tandem mass spectrometer in multiple reaction monitoring mode via electrospray ionization. The ion‐pairs including m/z 276.2–216.2 for cyclobenzaprine and m/z 325.2–109.1 for IS were used for monitoring. Linear calibration curves were obtained over the range of 0.049–29.81 ng/mL with the lower limit of quantification at 0.049 ng/mL. The intra‐ and inter‐day precision showed ≤6.5% relative standard deviation. The established method laid the groundwork for follow‐up studies and provided basis for the clinical administration of cyclobenzaprine. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
The current study aims to develop a specific and sensitive LC-MS/MS method for determination of bis(7)-tacrine (B7T) in rat plasma. A 100 microL plasma sample was extracted with ethyl acetate. B7T and the internal standard (IS), pimozide, in the samples were then analyzed with LC-MS/MS in positive electrospray ionization condition. Chromatographic separation of B7T and IS was achieved in a C(18) reversed-phase HPLC column (150 x 2.1 mm i.d.) by isocratic elution with a mobile phase consisting of 0.05% formic acid in water and acetonitrile (1:1, v/v) at a flow rate of 0.35 mL/min. Multiple-reaction monitoring (MRM) mode was employed to measure the ion transitions: m/z 247 to 197 for B7T and m/z 462 to m/z 328 for IS, respectively. The method was linear over the studied ranges of 100-5000 and 10-100 ng/mL. The intra-day and inter-day variations of the analysis were less than 6.8% with standard errors less than 9.0%. The detection limit of B7T in rat plasma was 1 ng/mL. The developed method was successfully applied to the pharmacokinetic study of B7T after intravenous administration of 1 mg/kg B7T and further proved to be readily utilized for determination of B7T in rat plasma samples.  相似文献   

17.
A sensitive, selective and robust liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was developed for the quantification of miglitol in rat plasma. The sample preparation procedures involved protein precipitation and unique solid‐phase extraction, which efficiently removed sources of ion suppression and column degradation interference present in the plasma. Chromatographic separation was achieved on an amide column using 10 mmol/L CH3COONH4 and CH3CN:CH3OH (90:10, v/v) as the mobile phase under gradient conditions. Detection was performed using tandem mass spectrometry equipped with an electrospray ionization interface in positive ion mode.The selected reaction monitoring transitions for miglitol and a stable isotope‐labeled internal standard were m/z 208 → m/z 146 and m/z 212 → m/z 176, respectively. The correlation coefficients of the calibration curves ranged from 0.9984 to 0.9993 over a concentration range of 0.5–100 ng/mL plasma. The quantification limit of the proposed method was more than 10 times lower than those of previously reported LC‐MS/MS methods. The novel method was successfully validated and applied to a pharmacokinetic study in rats. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Zhao H  Wang L  Qiu Y  Zhou Z  Zhong W  Li X 《Analytica chimica acta》2007,586(1-2):399-406
A new method was developed for the rapid screening and confirmation analysis of barbital, amobarbital and phenobarbital residues in pork by gas chromatography-tandem mass spectrometry (GC/MS/MS) with ion trap MSD. The residual barbiturates in pork were extracted by ultrasonic extraction, cleaned up on a multiwalled carbon nanotubes (MWCNTs) packed solid phase extraction (SPE) cartridge and applied acetone-ethyl acetate (3:7, v/v) mixture as eluting solvent and derivatized with CH3I under microwave irradiation. The methylated barbiturates were separated on a TR-5MS capillary column and detected with an ion trap mass detector. Electron impact ion source (EI) operating MS/MS mode was adopted for identification and external standard method was employed for quantification. One precursor ion m/z 169 was selected for analysis of barbital and amobarbital and m/z 232 was selected for phenobarbital. The product ions were obtained under 1.0 V excitation voltage. Good linearities (linear coefficient R > 0.99) were obtained at the range of 0.5-50 microg kg(-1). Limit of detection (LOD) of barbital was 0.2 microg kg(-1) and that of amobarbital and phenobarbital were both 0.1 microg kg(-1) (S/N > or = 3). Limit of quantification (LOQ) was 0.5 microg kg(-1) for three barbiturates (S/N > or = 10). Satisfying recoveries ranging from 75% to 96% of the three barbiturates spiked in pork were obtained, with relative standard deviations (R.S.D.) in the range of 2.1-7.8%.  相似文献   

19.
A sensitive and specific LC-MS/MS assay for the quantitative determination of EO9 and its metabolite EO5a is presented. A 200-microl human plasma aliquot was spiked with a mixture of deuterated internal standards EO9-d3 and EO5a-d4 and extracted with 1.25 ml ethyl acetate. Dried extracts were reconstituted in 0.1 M ammonium acetate-methanol (7 : 3, v/v) and 25 microl-volumes were injected into the HPLC system. Separation was achieved on a 150 x 2.1 mm C18 column using an alkaline eluent (1 mM ammonium hydroxide-methanol (gradient system)). Detection was performed by positive ion electrospray followed by tandem mass spectrometry. The assay quantifies a range from 5 to 2500 ng/ml for EO9 and from 10 to 2500 ng/ml EO5a using 200 microl of human plasma samples. Validation results demonstrate that EO9 and EO5a concentrations can be accurately and precisely quantified in human plasma. This assay will be used to support clinical pharmacologic studies with EO9.  相似文献   

20.
A rapid and sensitive LC‐MS/MS method for the quantification of fenofibric acid in rat plasma was developed and validated. Plasma samples were prepared by liquid–liquid extraction with a mixture of N‐hexane–dichloromethane–isopropanol (100:50:5, v/v/v). Isocratic chromatographic separation was performed on a reversed‐phase Discovery C18 column (2.1 × 50 mm, 5 µm). The mobile phase was methanol–water–formic (75:25:0.25, v/v/v). Detection of fenofibric acid and the internal standard (IS) diclofenac acid was achieved by ESI MS/MS in the negative ion mode using m/z 317 → m/z 213 and m/z 294 → m/z 250 transitions, respectively. The method was linear from 0.005 to 1.250 µg/mL when 100 μL plasma was analyzed. The lower limit of quantification was 0.005 µg/mL. The intra‐ and inter‐day precision values were below 8.2%, and accuracy ranged from ?0.9 to 2.1% in all quality control samples. The recovery was 90.3–94.7% and 83.3% for fenofibric acid and IS, respectively. Total run time for each sample analysis was 2.5 min. The validated method was successfully applied to a pharmacokinetic study in six rats after oral administration of fenofibrate, the ester prodrug of fenofibric acid (equivalent to fenofibric acid 5 mg/kg). The method permits laboratory scientists with access to the appropriate instrumentation to perform rapid fenofibric acid determination. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号