首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Plasma processes and electron beam generation in an electron source with a grid plasma cathode are investigated. Experiments are conducted under the conditions of efficient electron extraction and an intense counter ion flux, which break grid stabilization. It is shown that a rise in the gas pressure and in the emitting plasma potential leads to the plasma potential modulation in the frequency range 104–105 Hz. Under the self-oscillation conditions, an electron beam is obtained with a constant current of up to 16 A and an electron energy modulated up to 100% of the accelerating voltage level (100–300 V). An explanation is given for relaxation self-oscillations arising when the plasma potential grows and for the system’s inertial non-linearity arising when the plasma potential induced by the space charge of the counter ion flux lags behind the current of electron-beam-generated ions.  相似文献   

2.
建立了一个四组分一维混合模型,对电子束注入大气产生大尺度等离子体的过程进行了数值模拟.结果表明了能量为140keV、流强为50mA/cm2的注入电子束,可以产生线度为0.5m,密度为1012cm-3量级的大气环境下等离子体.电子束所伴随的空间电荷效应由于等离子体的产生会很快消失,不影响后续的等离子体产生过程.电子束注入流强主要影响产生等离子体的密度,而电子束能量则同时影响其空间线度和密度. 关键词: 电子束 碰撞 电离  相似文献   

3.
The transition of a low-current discharge with a self-heated hollow cathode to a high-current discharge is studied, and stability conditions for the latter in the pulsed–periodic mode with a current of 0.1–1.0 kA, pulse width of 0.1–1.0 ms, and a pulse repetition rate of 0.1–1.0 kHz are determined. The thermal conditions of the hollow cathode are analyzed, and the conclusion is drawn that the emission current high density is due to pulsed self-heating of the cathode’s surface layer. Conditions for stable emission from a plasma cathode with a grid acting as a plasma boundary using such a discharge are found at low accelerating voltage (100–200 eV) and a gas pressure of 0.1–0.4 Pa. The density of the ion current from a plasma generated by a pulsed beam with a current of 100 A is found to reach 0.1 A/cm2. Probe diagnostics data for the emitting and beam plasmas in the electron source are presented, and a mechanism behind the instability of electron emission from the plasma is suggested on their basis.  相似文献   

4.
Research has been done on major physical processes governing the scope for generating magnetized low-energy high-current electron beams in a plasma-filled system. Conditions are considered for efficient excitation of the explosive electron emission at a large-area cathode at low accelerating voltages, together with the trends in beam formation in the nonstationary double layer formed between the cathode and anode plasmas, as well as the beam transport to the collector in the inhomogeneous guiding plasma. It is found that a gun having a plasma anode enables one to generate wide-aperture electron beams of microsecond duration having a mean electron energy of 10–20 keV and an energy density of up to 20 J/cm2 or more, which goes with homogeneity sufficient for technological purposes.High-Current Electronics Institute, Siberian Branch, Russian Academy of Sciences. Translated from Izvestiya Vysshikh, Fizika, No. 3, pp. 100–114, March, 1994.  相似文献   

5.
We report on the results of simulation of the gas flow in a gun with a plasma emitter and in the system for extracting the electron beam to the atmosphere, constructed on the basis of standard gasdynamic windows (GDWs). The design of the gun and GDWs is described. Calculations are performed for a pressure of about 10–3 Torr in the electron beam generation range. It is shown that the pressure drop to the atmospheric pressure in the system of electron beam extraction to the atmosphere can be ensured by two GDW stages evacuated by pumps with optimal performance.  相似文献   

6.
Experimental results concerning the interaction of a modulated electron beam with a magnetoactive plasma in the whistler frequency range are reported. It was shown experimentally that when a beam is injected into the plasma, waves can be generated by two possible mechanisms: Cherenkov emission of whistlers by the modulated beam, and transition radiation from the beam injection point. In the case of weak beam currents (N b/N 0)≪−4) the Cherenkov resonance radiation is more than an order of magnitude stronger than the transition radiation; the Cherenkov emission efficiency decreases at high beam currents. The transformation of the distribution function of the beam is investigated for the case of weak beam currents. It is shown that in the case of the Cherenkov interaction with whistlers the beam is retarded and the beam distribution function becomes wider and acquires a plateau region. Pis’ma Zh. éksp. Teor. Fiz. 67, No. 6, 378–382 (25 March 1998)  相似文献   

7.
The steady state and transient self-interaction of a laser beam with a strongly ionized plasma flowing transverse to the direction of propagation have been investigated by a phenomenological approach using perturbation theory, WKB and paraxial ray approximations. The effect of the transverse motion of the plasma has been included by a convection term in the energy balance equation and is found to result in the non-symmetrical heating of electrons. As a result the beam is shifted towards the direction of transverse flow of the plasma by an amount that increases with the flow velocity. The extent of asymmetry in self-focusing along the transverse directions is, however very small. In a typical case of 7.6×105 watt laser of ω=104 GHz and initial beam widthr 0=0.05 cm the transverse shiftx p=0.1r 0 is predicted in a distance of propagationz=0.34 cm in a strongly ionized plasma of electron densityN e=1016 cm?3 and transverse flow velocityW 0=107 cm/sec.  相似文献   

8.
The results of studies of the physical nature of emissions produced in polymethyl methacrylate excited by electron beams of a subnanosecond or a nanosecond duration are presented. The spatial, amplitude, and spectral-kinetic properties of emissions have been examined under an electron beam energy density varying from 10–4 to 4 × 10–1 J/cm2. It has been found that cathodoluminescence is the primary type of emission under low energy densities of the electron beam. When the energy density of a nanosecond electron beam and/or the number of pulses of excitation by a subnanosecond electron beam were increased, an electrical breakdown of polymethyl methacrylate occurred in the irradiated region. This process was accompanied by a burst of emission of dense, low-temperature plasma.  相似文献   

9.
It is shown that by combining a laser wave and an electron beam propagating through a plasma inside a wiggler: (i) Electrons can be accelerated to high energies. For usual laser frequencies and wiggler wavelengths, plasma densities are in the range 1015–1016 cm-3. The plasma density fluctuation in the longitudinal wave suffices to obtain electron energies of several hundred MeV over short distances. (ii) High frequency radiation can be amplified.  相似文献   

10.
The two-dimensional (axisymmetric) equilibrium of a modulated electron beam (sequence of bunches) in a magnetoactive plasma under resonance conditions, when the frequency of modulation of the beam M is close to (less than) the plasma frequency p, is studied. The field of the collective electrostatic wave, focusing the bunches, is compensated by the thermal repulsion of the beam electrons. Based on the solutions obtained, it is established that the external magnetic field has a twofold effect on the equilibrium beam: first, to a weakening of the radial component of the focusing field because of the appearance of anisotropy in the dielectric permittivity tensor of the plasma and, second, an additional radial focusing of the bunches when they are rotated by the Lorentz force. The regions of the beam and plasma parameters in which one or another of the indicated effects predominates are determined and the conditions for the predominance of magnetic over electrostatic focusing are found.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 3, pp. 3–8, March, 1985.The author thanks V. B. Krasovitskii for proposing the subject and for constant interest in this work.  相似文献   

11.
The generation of a 250-μs-wide electron beam in a plasma-emitter diode is studied experimentally. A plasma was produced by a pulsed arc discharge in hydrogen. The electron beam is extracted from a circular emission hole 3.8 mm in diameter under open plasma boundary conditions. The beam accelerated in the diode gap enters into a drift space in the absence of an external magnetic field through a hole 4.1 mm in diameter made in the anode. The influence of electron current deposition at the edge of the anode hole on the beam’s maximum attainable current, above which the diode gap breaks down, is studied for different accelerating voltages and diode gaps. The role of processes occurring on the surface of the electrodes is shown. For an accelerating voltage of 32 kV, a mean emission current density of 130 A/cm2 is achieved. The respective mean strength of the electric field in the acceleration gap is 140 kV/cm. Using the POISSON-2 software package, the numerical simulation of the diode performance is carried out and the shape of steady plasma emission boundaries in the cathode and anode holes is calculated. The influence of the density of the ion current from the anode plasma surface on the maximum attainable current of the electron beam is demonstrated.  相似文献   

12.
In the present work, we investigate the distributed regimes of an intense laser beam in a self-consistent plasma channel. As the intensity of the laser beam increases, the relativistic mass effect as well as the ponderomotive expulsion of electrons modifies the dielectric function of the medium due to which the medium exhibits nonlinearity. Based on Wentzel–Kramers–Brillouin and paraxial ray theory, the steady-state solution of an intense, Gaussian electromagnetic beam is studied. A differential equation of the beamwidth parameter with the distance of propagation is derived, including the effects of relativistic self-focusing (SF) and ponderomotive self-channeling. The nature of propagation and radial dynamics of the beam in plasma depend on the power, width of the beam, and Ω p, the ratio of plasma to wave frequency. For a given value of Ω p (<1), the distribution regimes have been obtained in beampower–beamwidth plane, characterizing the regimes of propagation as steady divergence, oscillatory divergence, and SF. The related focusing parameters are optimized introducing plasma density ramp function, and spot size of the laser beam is analyzed for inhomogeneous plasma. This results in overcoming the diffraction and guiding the laser beam over long distance. Numerical computations are performed for typical parameters of relativistic laser–plasma interaction studies.  相似文献   

13.
Results are presented from experimental studies of the destruction of a solid target by a high-density nonrelativistic electron beam at a deposited power density of 20 MW/cm2 in millisecond pulses. Results of studying beam transportation under these conditions are presented as well.  相似文献   

14.
We consider the possibility of the formation of a superconductivity state either in a semiconductor or in an electron–hole plasma with degenerate electrons due to the attractive forces between the electrons as a result of the exchange effects through the electron–hole sound wave by an analogy to the phonon waves in a solid state. We have determined an interaction potential between two electrons in a degenerate electron–hole plasma. The potential appears to be attractive at distances much larger than the Debye radius and decreases as 1/r3. We discuss the conditions in which the bound electron state, the so‐called “Cooper Pair,” in a such field can be formed.  相似文献   

15.
Results are presented from the first stage of studies on the passage of an electron beam with energy 100–500 eV in a magnetic field of 300–700 Oe through the curvilinear solenoid of the KRéL unit, the latter being a prototype of the closing segment of the Drakon stellarator system, in the plasma-beam discharge regime. The ion density at the end of the curvilinear part of the chamber, n i ≈8×108–1010 cm−3, the electron temperature T e ≈4–15 eV, and the positions at which the beam hits the target for different distances from it to the electron source are determined experimentally. The motion of the electron beam is computationally modeled with allowance for the space charge created by the beam and the secondary plasma. From a comparison of the experimentally measured trajectories and trajectories calculated for different values of the space charge, we have obtained an estimate for the unneutralized ion density of the order of 5×107 cm−3. Zh. Tekh. Fiz. 69, 22–26 (February 1999)  相似文献   

16.
We report on the results of analysis of propagation of an electron beam from a plasma-filled diode in the absence of the metal anode between the regions of beam generation and transportation. The diode parameters are 160 kA, 400 kV, and 50 GW. At a distance exceeding 10 cm behind the generation region, a beam current of 100 kA to the target and an energy density of 20 J/cm2 are attained for the beam cross-sectional area of about 200 cm2. The possibility of varying the beam current and energy density by changing the distance to the target is demonstrated.  相似文献   

17.
The investigation of the interaction of pulsed electron beams with PMMA (polymethylmethacrylate) targets is reported. The electron beam of some 10–8 s in duration is produced in a pulsed low-pressure gas discharge. The beam power density of up to 108 W/cm2 leads to a surface plasma formation similar to that of the pulsed laser ablation process. The propagation of the ablated material and the shock wave inside the PMMA target are observed by means of Schlieren diagnostics. An electron density gradient of over 3×1019 cm–4 has been observed in the expanding plasma up to 1.5 s after the plasma formation. During the early stage of expansion, the expansion velocity of the plasma plume as determined by the steep electron density gradient is around 105 cm/s. The pressure behind the shock front inside the PMMA target as determined from the shock velocity exceeds 0.3 Gpa.  相似文献   

18.
Nonlinear evolution of h. f. instabilities excited by a premodulated electron beam in a magnetized plasma is investigated both theoretically and experimentally. Only the erenkov type of excitation (k¦|vb) of the upper branch of the electron plasma oscillations has been observed. The dynamics of excitation of the quasistationary fundamental wave (having the frequency of modulation) has been determined numerically. The wave absorption has been included into the theoretical model through an effective collision frequency. Numerical results agree well with the measured evolution of the amplitude and of the phase velocity of the fundamental wave along the system, as well as with the beam distribution functions. The observed bunching of beam electrons and characteristic features of plasma electrons heating are also reported. Broadening of the frequency spectrum and the occurrence of satellite waves with lower phase velocities have been observed downstream. Physical mechanism of spantaneous excitation of these satellites is suggested and their role in the process of the beam relaxation is discussed. More detailed studies of the nonlinearly excited waves have been performed by modulating the beam at two frequencies.It is a pleasure for us to thank Dr .Körbel who has kindly performed the numerical calculations.  相似文献   

19.
为了研究高速动态气流中的电子束等离子体特性,建立了一个由蒙特卡罗模型、多组分等离子体模型与计算流体力学模型组成的多阶段耦合数值模型,在临近声速气流条件下,对1.33×104 Pa空气电子束等离子体特性进行了研究。结果表明,电子束能量沉积具有极强的空间不均性,电子束激发下的风洞流场呈现不同的性质,亚声速流场下游边界区密度减小,而在超声速流场中可诱发弱激波;相比于静止气体,在动态气流中等离子体密度下降,且存在额外的输运行为,使其向气流下游输运,但在临近声速条件下,气流速度大小对气流下游等离子体分布的影响不大;电子束入射角对等离子体空间分布和大小均有影响。  相似文献   

20.
In the presence of a strong Gaussian laser beam, the non-linearity in the dielectric constant of a strongly ionized plasma has been investigated. The non-linearity arises due to the heating and redistribution of the electrons; the loss of electron energy gained from the field has been assumed to be due to thermal conduction. This self-induced non-linearity causes a self-focusing and oscillatory waveguide propagation of the beam even when the non-linear dielectric constant does not fall in the saturating range. In a typical case of a 1010 W laser, the enhancement of axial intensity by a factor of 25 has been predicted in a length of 0.6 cm.Works supported by N.S.F. (USA).On leave from Malviya Regional Engeeniring College, Jaipur-4, India.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号