首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We analyze the absorption of a high-frequency electromagnetic field in the type II superconductor Pb0.8In0.2 in magnetic fields H c2 < H < H c3. The absorption component proportional to the rate of variation of the external magnetic field is detected. We assume that this absorption component is associated with the dynamic mixed state of the superconducting shell containing 2D magnetic flux vortices (Kulik vortices). The motion of these vortices under the action of the critical current ensures the required difference between the external and internal magnetic inductions of the superconducting shell upon a change in the external magnetic field. This model correctly describes the observed behavior of absorption of rf electromagnetic radiation.  相似文献   

2.
The thermodynamic properties of an In Sb quantum dot have been investigated in the presence of Rashba spin–orbit interaction and a static magnetic field. The energy spectrum and wave-functions for the system are obtained by solving the Schrodinger wave-equation analytically. These energy levels are employed to calculate the specific heat, entropy,magnetization and susceptibility of the quantum dot system using canonical formalism. It is observed that the system is susceptible to maximum heat absorption at a particular value of magnetic field which depends on the Rashba coupling parameter as well as the temperature. The variation of specific heat shows a Schottky-like anomaly in the low temperature limit and rapidly converges to the value of 2kB with the further increase in temperature. The entropy of the quantum dot is found to be inversely proportional to the magnetic field but has a direct variation with temperature. The substantial effect of Rashba spin–orbit interaction on the magnetic properties of quantum dot is observed at low values of magnetic field and temperature.  相似文献   

3.
Penetration by Abrikosov flux lines of an isotropic hard superconductor in the critical state induced by changes in the orientation of external magnetic field has been theoretically investigated. The analysis has been based on the microscopic nonlocal model taking into account forces of bulk and surface pinning, alongside magnetic forces of interaction of the row of penetrating vortices with existing flux lines, Meissner currents, and vortex images. New vortices penetrate a superconductor only when the angle through which the field is rotated is larger than a certain critical value. It has been determined that the alignment of entering vortices is essentially different from that of the applied magnetic field. The feasibility of detecting noncollinearity effects is discussed. Zh. éksp. Teor. Fiz. 114, 1804–1816 (November 1998)  相似文献   

4.
The effect of variation of dielectric constant on the relative magnetic field effect in singlet luminescence has been studied using a typical exciplex system at a saturating field. The study indicates strong specificity in the perturbation of the magnetic field effect by alcoholic solvents. In contrast to alcohols where relative singlet magnetic field effect is of the order of 2% only, the magnetic field effect in non-alcoholic medium reaches as high as 9%. Moreover, dielectric constant variation in alcohols yields curves which are distinctly different from those in non-alcoholic media. It turns out that this dependence of magnetic field effect on dielectric constant is similar in all non-alcoholic solvent mixtures. An analytical study based on Hong and Noolandi’s solution of Smoluchowski equation has been made. Derived expressions can interpret experimental curves reasonably well.  相似文献   

5.
The problem of magnetic field penetration into a type-II high-temperature superconductor that is in the weakly pinned vortex-liquid phase is considered. A magnetic field on the superconductor boundary rises with time in the blow-up regime. A model hydrodynamic equation describing the magnetic induction distribution in the vortex-liquid phase for thermomagnetic motion of the flux is derived. Analytical expressions for the depth and rate of magnetic field penetration into the superconductor are found. It is demonstrated that these quantities depend on parameters of the problem: index of power n in the boundary regime characterizing the penetration rate of vortices into the superconducting half-space and a parameter describing the effect of random pinning forces and thermal fluctuations on the magnetic flux distribution.  相似文献   

6.
S BELGHIT  A SID 《Pramana》2016,87(6):96
In this work, the Weibel instability due to inverse bremsstrahlung absorption in laser fusion plasma has been investigated. The stabilization effect due to the coupling of the self-generated magnetic field by Weibel instability with the laser wave field is explicitly showed. The main result obtained in this work is that the inclusion of self-generated magnetic field due to Weibel instability to the inverse bremsstrahlung absorption causes a stabilizing effect of excited Weibel modes. We found a decrease in the spectral range of Weibel unstable modes. This decrease is accompanied by a reduction of two orders in the growth rate of instability or even stabilization of these modes. It has been shown that the previous analyses of the Weibel instability due to inverse bremsstrahlung have overestimated the values of the generated magnetic fields. Therefore, the generation of magnetic fields by the Weibel instability due to inverse bremsstrahlung should not affect the experiences of an inertial confinement fusion.  相似文献   

7.
8.
We use a combination of numerical simulations and experiments to elucidate the structure of the flow of an electrically conducting fluid past a localized magnetic field, called magnetic obstacle. We demonstrate that the stationary flow pattern is considerably more complex than in the wake behind an ordinary body. The steady flow is shown to undergo two bifurcations (rather than one) and to involve up to six (rather than just two) vortices. We find that the first bifurcation leads to the formation of a pair of vortices within the region of magnetic field that we call inner magnetic vortices, whereas a second bifurcation gives rise to a pair of attached vortices that are linked to the inner vortices by connecting vortices.  相似文献   

9.
It has been established that structural changes in a ferrofluid (formation of clusters) upon the effect of an external magnetic field can be effectively studied by ultrasound spectroscopy. In particular, the resonance absorption of ultrasonic waves enables detection and determination of the size of spherical clusters. This paper reports results of a study of changes of the size of clusters formed in a magnetic field as a function of the rate of the magnetic field intensity changes, the ferrofluid temperature, the frequency of the ultrasound wave and the angle between the magnetic field vector and the direction of ultrasound wave propagation.  相似文献   

10.
The Keldysh theory of the superfluidity of a diluted electron-hole gas has been generalized to the case of the possible polarization of the pairs. It has been shown that the inhomogeneity of the system induces the dipole moment, which appears near the system boundaries and is proportional to the gradient of the particle density. It has been found that the quantized vortices in the magnetic field carry a real electric charge. The charge density in He II rotating at a rate of 102s−1 in a magnetic field of 10 T is about 104 e cm−3, where e is the elementary charge.  相似文献   

11.
刘静思  李吉  刘伍明 《物理学报》2017,66(13):130305-130305
通过虚时演化方法研究了具有面内四极磁场的旋转玻色-爱因斯坦凝聚体的基态结构.结果发现:面内四极磁场和旋转双重作用可导致中央Mermin-Ho涡旋的产生;随着磁场梯度增强,Mermin-Ho涡旋周围环绕的涡旋趋向对称化排布;在四极磁场下,密度相互作用和自旋交换相互作用作为体系的调控参数,可以控制Mermin-Ho涡旋周围的涡旋数目;该体系自旋结构中存在双曲型meron和half-skyrmion两种拓扑结构.  相似文献   

12.
We study the magnetic field behavior of the resonant current steps appearing in one dimensional arrays of Josephson tunnel junctions. The analysis is carried out in the framework of the Kulik theory of resonances in small Josephson junctions, and the theoretical maximum current amplitude of the Fiske steps is computed as a function of the applied magnetic field. Preliminary measurements of the Fiske step current modulations induced by varying the magnetic field is also reported and discussed.  相似文献   

13.
It is established experimentally that the magnetic field directed along the b axis has little effect on the velocities of antiferromagnetic vortices in the domain boundary (DB) of yttrium orthoferrite and fails to explain the presence of an appreciable gyroscopic force acting on these vortices. This force is induced by the dynamic canting of magnetic sublattices proportional to the DB velocity. Due to the canting, the velocities of antiferromagnetic vortices depend initially quadratically on the DB velocity, as was experimentally found in this work. The dynamics of antiferromagnetic vortices in the yttrium orthoferrite DBs is gyroscopic and quasi-relativistic, with the limiting velocity of 20 km/s equal to the velocity of spin waves at the linear portion of their dispersion curve.  相似文献   

14.
We present noise measurements on YBCO thin films in different conditions of magnetic field and driving current. Noise spectra for non-driven and driven cases (in the flux-creep region) evidence deep differences in vortex dynamics between these two regimes. For the driven case, the effect of applying magnetic field is a reduction in noise, which can be explained by the increase in the fraction of vortices that undergo flux-flow. For the non-driven case, magnetic field has no significative influence on noise, probably due to the absence of Lorentz force that causes coherent movement of vortices. For all magnetic fields studied in this work (0-154 mT) the effect of increasing current is an increase of noise, which is in contrast to the results from other authors. This behavior can be explained by an increase of current induced vortex-antivortex annihilation events. We propose that driven noise has a non-monotonic behavior due to the competition between annihilation events and driving force which causes opposite effects on noise.  相似文献   

15.
The threshold frequency of absorption in a quantum pseudodot under the influence of temperature and applied magnetic field is calculated. The threshold frequency of absorption is computed as a function of temperature and applied magnetic field. The linear and nonlinear dependence of the absorption threshold frequency on magnetic field and temperature has been showed. According to the results obtained from the present work, we find that the linear and nonlinear dependence of the absorption threshold frequency depends on used range of the temperatures and magnetic fields.  相似文献   

16.
A change in the effect of a frozen magnetic field parallel to the c-axis on rf power absorption, which is associated with the motion of Josephson vortices, is observed in the layered superconductor Bi2Sr2CaCu2O8 at a low temperature (~15 K). The effect is interpreted as a change in the interaction between an Abrikosov vortex and a Josephson vortex from attraction (at high temperatures) to repulsion (at low temperatures). It is found that the dynamics of the magnetic flux parallel to the ab plane of the single crystal becomes irreversible upon a transition of the superconductor to the layered state. Possible reasons behind the observed effect are considered, one of them being a manifestation of the second superconducting transition in the elementary-excitation spectrum of a d-type superconductor near the core of Abrikosov vortices.  相似文献   

17.
The Hall effect in the mixed state of high-Tc superconductors (HTSC) is of an anomalous nature: near the transition there is a range of temperatures and of magnetic fields where the sign of the Hall effect is opposite to that in the normal state. The universality of the phenomenon in question is indicative of its connection with some general properties of the mixed state of type-II superconductors, namely, with peculiarities of motion of magnetic flux vortex lines (vortices) in these superconductors. This work puts forward a model accounting for a number of vortex motion specific features and providing a possibility to obtain the characteristics of the anomalous Hall effect.

The work is based on the phenomenologically generalized results of Bardeen-Stephen and Nozieres-Vinen, supplemented with an allowance for a new mechanism of vortex “friction” associated with Andreev electron reflection on the interface between the normal core and the superconducting periphery of a vortex. Within the framework of the model suggested, magnetic field (and temperature) dependences of the longitudinal and Hall resistances of a mixed state superconductor have been calculated at temperatures nearing Tc. At certain quite realistic parameters which define the forces acting on the vortices, there is a range of magnetic fields and temperatures where the sign of the Hall effect is opposite to that in the normal state. The lower limit of this range is the irreversibility line and the upper critical field.  相似文献   


18.
李吉  刘伍明 《物理学报》2018,67(11):110302-110302
利用准二维Gross-Pitaevskii方程,研究了在梯度磁场中具有自旋-轨道耦合的旋转两分量玻色-爱因斯坦凝聚体的基态结构.探索了自旋-轨道耦合作用和梯度磁场对基态的影响.结果发现,在梯度磁场下,随着自旋-轨道耦合强度增大,基态结构由skyrmion格子逐渐过渡为skyrmion列.对于弱自旋-轨道耦合和小旋转频率情况,增大磁场梯度强度可导致基态由平面波相转变为half-skyrmion;对于强自旋-轨道耦合和大旋转频率情况,梯度磁场可诱导hidden涡旋的产生.梯度磁场、自旋-轨道耦合和旋转作为体系的调控参数,可用于控制不同基态相间的转化.  相似文献   

19.
The change in the magnetic domain structure due to the proximity of a superconductor has been experimentally investigated for the first time. The complex character of magnetization reversal at temperatures below critical, caused by the mutual long-range effect of a superconductor and a magnet, has been shown. In particular, it is found that even magnetization reversal of the heterostructure by an in-plane field leads to the formation of Abrikosov vortices in the superconductor, carrying a flux perpendicularly to the film plane. It is shown that this is a consequence of the transformation of narrow domain walls into wide stripes due to the interaction with scattering fields from the superconductor. In turn, after penetration of the magnetic flux into the superconductor at some depth, the scattering fields cause backward magnetization reversal of the external film edge, as a result of which vortices with oppositely directed fluxes enter the crystal and propagate in the superconductor bulk in the form of chains along twins, as in the case of magnetization by a perpendicular magnetic field. Thus, at longitudinal magnetization, the flux enters the superconducting film in the form of wide stripes with alternating perpendicular induction, which is explained by the long-range interaction of the scattering fields of the superconductor with the manganite magnetization.  相似文献   

20.
The effect of the random magnetic field distribution on the phase diagrams and ground state magnetizations of Ising nanowire is investigated using effective field theory with correlations. Trimodal distribution has been chosen as a random magnetic field distribution. The variation of the phase diagrams with that distribution parameters has been obtained and some interesting results have been found such as reentrant behavior and first order transitions. Also for the trimodal distribution, ground state magnetizations for different distribution parameters have been determined which can be regarded as separate partially ordered phases of the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号